English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28588/40619
Visitors : 4124296      Online Users : 83
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45938

Title: Comparison of initial hydrolysis of the three dimethyl phthalate esters (DMPEs) by a basidiomycetous yeast, Trichosporon DMI-5-1, from coastal sediment.
Authors: Zhu-Hua Luo;Yi-Rui Wu;Ka-Lai Pang;Ji-Dong Gu;Lilian L. P. Vrijmoed
Contributors: 國立臺灣海洋大學:海洋生物研究所
Date: 2011
Issue Date: 2018-04-17T08:46:55Z
Publisher: Environmental Science and Pollution Research
Abstract: Abstract: Purpose
Dimethyl phthalate esters (DMPEs) are a group of plasticizers commonly detected in the environment with potential adverse human health impact. The degradation of DMPEs by fungal systems has been studied to a limited extent, particularly by yeasts. In this study, a basidiomycetous yeast Trichosporon DMI-5-1 capable of degrading DMPEs was obtained and the degradation pathways were investigated.

A DMPE-degrading yeast was isolated from costal sediment by enrichment culture technique and was identified as Trichosporon sp. DMI-5-1 based on microscopic morphology and 18S rDNA sequence. Comparative investigations on biodegradation of three isomers of DMPEs, namely dimethyl phthalate (DMP), dimethyl isophthalate (DMI), and dimethyl terephthalate (DMT), were carried out with this yeast strain. Trichosporon sp. DMI-5-1 could not mineralize DMPEs completely but transform them to respective monomethyl phthalate or phthalic acid. Biochemical degradation pathways for the three DMPE isomers by Trichosporon sp. DMI-5-1 were apparently different. The yeast carried out one-step ester hydrolysis of DMP and DMI to respective monoesters (monomethyl phthalate and monomethyl isophthalate, respectively) and no further metabolism of these two monoesters. Meanwhile, DMT was transformed by the yeast to monomethyl terephthalate and subsequently to terephthalic acid by stepwise hydrolysis of the two ester bonds.

This study shows that different catalytic processes are involved in the transformation of DMPEs by the basidiomycetous yeast Trichosporon sp. DMI-5-1 and suggests that its esterases, responsible for the initial hydrolyzing the two ester bonds of DMPEs, are highly substrate specific.
Relation: 18(9) pp.1653-1660
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45938
Appears in Collections:[海洋生物研究所] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback