English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40652
Visitors : 767433      Online Users : 49
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45587

Title: Combined administration of fucoidan ameliorates tumor and chemotherapy-induced skeletal muscle atrophy in bladder cancer-bearing mice.
Authors: Meng-Chuan Chen
Wen-Lin Hsu
Pa-An Hwang
Yen-Lin Chen
Tz-Chong Chou
Contributors: 國立臺灣海洋大學:生命科學系
Keywords: inflammation
cancer cachexia
fucoidan
muscle atrophy
chemotherapy
Date: 2016
Issue Date: 2018-03-27T07:35:30Z
Publisher: Oncotarget
Abstract: Abstract: Cancer cachexia is characterized by anorexia, skeletal muscle atrophy, and systemic inflammation. Fucoidan extracted from brown algae exhibits anti-inflammatory and anticancer activities. However, whether fucoidan ameliorates tumour and chemotherapy-induced muscle atrophy and -related cachectic symptoms remains unknown. Compared with mice with bladder cancer treated with chemotherapy alone (TGC group), those treated with a combination of low molecular weight fucoidan (LMWF) and chemotherapy drugs such as gemcitabine and cisplatin (TGCF) showed a significant reduction of body weight loss, muscle atrophy, and intestinal injury and dysfunction. Moreover, myostatin, activin A, and pro-inflammatory cytokine production, FoxO3 expression and activation, NF-κB activation, MuRF-1 and MAFbx/atrogin-1 expression, and proteasome activity in muscle were significantly decreased in the TGCF group compared with the TGC group. In addition, insulin-like growth factor 1 (IGF-1) expression and formation, and IGF-1-regulated mTOR/p70S6k/4EBP-1 protein synthesis signalling were elevated in the TGCF group compared with the TGC group. Taken together, these results suggest that LMWF is a potential agent for preventing cancer cachexia-associated muscle atrophy during chemotherapy. Furthermore, the beneficial effect of LMWF may be attributed to suppressing NF-κB-evoked inflammation, myostatin and activin A production, and subsequent muscle proteolysis, and enhancing IGF-1-dependent protein synthesis.
Relation: 7
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45587
Appears in Collections:[生命科學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML61View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback