English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26987/38787
Visitors : 2297758      Online Users : 26
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45549

Title: Glucagon regulates ACC activity in adipocytes through the CAMKKβ/AMPK pathway.
Authors: I-Chen Peng;Zhen Chen;Wei Sun;Ying-Shiuan Li;Traci LaNai Marin;Pang-Hung Hsu;Mei-I Su;Xiaopei Cui;Songqin Pan;Christian Y. Lytle;David A. Johnson;Frank Blaeser;Talal Chatila;John Y-J. Shyy
Contributors: 國立臺灣海洋大學:生命科學系
Date: 2012
Issue Date: 2018-03-26T06:10:07Z
Publisher: American Physiological Society
Abstract: Abstract: Glucagon is important for regulating lipid metabolism in part through its inhibition of fatty acid synthesis in adipocytes. Acetyl-CoA carboxylase 1 (ACC1) is the rate-limiting enzyme for fatty acid synthesis. Glucagon has been proposed to activate cAMP-dependent protein kinase A (PKA), which phosphorylates ACC1 to attenuate the lipogenic activity of ACC1. Because AMP-activated protein kinase (AMPK) also inhibits fatty acid synthesis by phosphorylation of ACC1, we examined the involvement of AMPK and its upstream kinase in the glucagon-elicited signaling in adipocytes in vitro and in vivo. LC-MS-MS analysis suggested that ACC1 was phosphorylated only at Ser79, an AMPK-specific site, in glucagon-treated adipocytes. Pharmacological inhibitors and siRNA knockdown of AMPK or PKA in adipocytes demonstrate that glucagon regulates ACC1 and ACC2 activity through AMPK but not PKA. By using Ca2+/calmodulin-dependent protein kinase kinase-β knockout (CaMKKβ−/−) mice and cultured adipocytes, we further show that glucagon activates the CaMKKβ/AMPK/ACC cascade. Additionally, fasting increases the phosphorylation of AMPK and ACC in CaMKKβ+/+ but not CaMKKβ−/− mice. These results indicate that CaMKKβ/AMPK signaling is an important molecular component in regulating lipid metabolism in adipocytes responding to glucagon and could be a therapeutic target for the dysregulation of energy storage.
Relation: 302(12)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45549
Appears in Collections:[生命科學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML63View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback