National Taiwan Ocean University Institutional Repository:Item 987654321/45487
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 28603/40634
造访人次 : 4216278      在线人数 : 57
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 进阶搜寻

jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45487

题名: Solid-State Synthesis of Self-Functional Carbon Quantum Dots for Detection of Bacteria and Tumor Cells.
作者: Irving Po-Jung Lai
Scott G.Harroun
Shiow-Yi Chen
Binesh Unnikrishnan
Yu-Jia Li
Chih-Ching Huang
贡献者: 國立臺灣海洋大學:生命科學系
关键词: Tumor cells
Solid-state synthesis
Carbon quantum dots
Labeling
Bacteria
日期: 2016
上传时间: 2018-03-21T07:15:41Z
出版者: Sensors and Actuators B: Chemical
摘要: Abstract: We have developed a simple solid-state synthesis procedure to functionalize fluorescent carbon quantum dots (CQDs), using ammonium citrate as a carbon source and appropriate molecules as recognition ligands. Mannose and folic acid were used to modify CQDs to selectively label Escherichia coli (E. coli) and tumor cells, respectively. First, fluorescent-core CQDs (approximate size: 3 nm) were synthesized through carbonization of ammonium citrate via dry heating. In the second step, CQDs were heated with mannose and folic acid to prepare mannose-functionalized CQDs (Man–CQDs) and folic acid-functionalized CQDs (FA–CQDs), respectively, through a dehydration reaction in the solid state. Solid-state synthesis of the self-functional CQDs is achievable without a coupling agent. We optimized the labeling efficiencies of self-functional Man–CQD and FA–CQD to cells by controlling the ratio of mannose or folic acid to CQDs, as well as the reaction temperature during synthesis. The solid-state synthesized Man–CQDs and FA–CQDs exhibited excitation-dependent fluorescence with excitation and emission maxima of 365 and 450 nm, respectively, and a fluorescence quantum yield of approximately 9%. Man–CQDs can be used for selective labeling of E. coli and detection at concentrations as low as 100 colony forming units mL−1 in real samples (e.g., drinking water, apple juice, urine). Furthermore FA–CQDs are highly selective for labeling of folate receptor-overexpressing tumor cells. The synthesis of self-functional CQDs is simple, cost effective, and easily scaled up, and can be extended to the synthesis of various functional carbon nanomaterials, such as graphene oxide nanosheets, carbon nanotubes, fullerene nanoparticles and carbon nanodiamonds, with different ligands for other biolabeling applications and targeted therapies.
關聯: 228
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45487
显示于类别:[生命科學系] 期刊論文

文件中的档案:

档案 描述 大小格式浏览次数
index.html0KbHTML46检视/开启


在NTOUR中所有的数据项都受到原著作权保护.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈