English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28354/40347
Visitors : 4105215      Online Users : 119
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45480

Title: ROCK Inhibitor Y-27632 Attenuated Early Endothelial Dysfunction Caused by Occupational Environmental Concentrations of Carbon Black Nanoparticles.
Authors: J. Y. Yan;C. C. Huang;S. C. C. Lung;W. C. Wang;G. L. Suo;Y. J. Lin;C. H. Lai;C. H. Lin
Contributors: 國立臺灣海洋大學:生命科學系
Date: 2017
Issue Date: 2018-03-21T06:16:05Z
Publisher: Environmental Science: Nano
Abstract: Abstract: The unique properties of carbon black nanoparticles (CBNs) make them feasible for new applications and raise concerns about cardiovascular disorders. Exposure to CBNs has been associated with the progression of atherosclerosis, whereas little is known about the mechanism. Here, we used CBNs to investigate whether the RhoA/Rho-associated coiled-coil containing protein kinase (ROCK) pathway is required to elevate the risk of developing endothelial dysfunction under realistic occupational environmental concentrations. The effect of a specific inhibitor of ROCK, Y-27632, on CBN-induced endothelial dysfunction was evaluated using endothelial monoculture and co-culture models. We evaluated the endothelial barrier integrity by measuring endothelial cell migration, transendothelial electrical resistance, tight-junction proteins, and cytoskeletal rearrangement. CBNs significantly induced endothelial barrier dysfunction, which was attenuated by Y-27632. Furthermore, upregulation of monocyte adhesion and migration was attenuated by Y-27632 in a co-culture model of monocytes, macrophages, and endothelial cells. Finally, a change in oxidized low-density lipoprotein and endothelial nitric oxide synthase, which contributes to the development of atherosclerosis, was also inhibited by Y-27632. Our results indicate that the RhoA/ROCK signaling pathway may upregulate inflammatory stress and mediate the development of early endothelial dysfunction induced by realistic occupational environmental concentrations of CBNs. Pharmacological inhibition of ROCK may have therapeutic potential in preventing CBN-associated endothelial dysfunction.
Relation: 7
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45480
Appears in Collections:[生命科學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback