English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2325580      Online Users : 54
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45444

Title: Shikonin induces immunogenic cell death in tumor cells and enhances dendritic cell-based cancer vaccine.
Authors: Chen HM
Wang PH
Chen SS
Wen CC
Chen YH
Yang WC
Yang NS.
Contributors: 國立臺灣海洋大學:水產養殖學系
Keywords: Cancer vaccine
Shikonin
Immunogenic cell death
Damage-associated molecular pattern
Dendritic cells
Date: 2012
Issue Date: 2018-03-19T06:35:43Z
Publisher: Cancer Immunology, Immunotherapy
Abstract: Abstract: Immunogenic cell death is characterized by damage-associated molecular patterns, which can enhance the maturation and antigen uptake of dendritic cells. Shikonin, an anti-inflammatory and antitumor phytochemical, was exploited here as an adjuvant for dendritic cell-based cancer vaccines via induction of immunogenic cell death. Shikonin can effectively activate both receptor- and mitochondria-mediated apoptosis and increase the expression of all five tested damage-associated molecular patterns in the resultant tumor cell lysates. The combination treatment with damage-associated molecular patterns and LPS activates dendritic cells to a high maturation status and enhances the priming of Th1/Th17 effector cells. Shikonin-tumor cell lysate-loaded mature dendritic cells exhibit a high level of CD86 and MHC class II and activate Th1 cells. The shikonin-tumor cell lysate-loaded dendritic cell vaccines result in a strong induction of cytotoxic activity of splenocytes against target tumor cells, a retardation in tumor growth, and an increase in the survival of test mice. The much enhanced immunogenicity and efficacy of the current cancer vaccine formulation, that is, the use of shikonin-treated tumor cells as cell lysates for the pulse of dendritic cells in culture, may suggest a new ex vivo approach for developing individualized, dendritic cells-based anticancer vaccines.
Relation: 61(11)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45444
Appears in Collections:[水產養殖學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML16View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback