English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28607/40644
Visitors : 5233651      Online Users : 546
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45350

Title: Effect of cecropin B and a synthetic analog on propagation of fish viruses in vitro
Authors: Peter P. Chiou;Chun-Mean Lin;Luis Perez;Thomas T. Chen
Contributors: 國立臺灣海洋大學:水產養殖學系
Date: 2002
Issue Date: 2018-03-14T06:31:25Z
Publisher: Marine Biotechnology
Abstract: Abstract: Cecropins and other natural antimicrobial peptides are widely distributed in animals from insects to mammals. These proteins have been shown to be major constituents of the innate immune systems of animals for nonspecific defense of the host against various bacteria and parasites. Therefore, exploitation of this natural innate defense system may lead to the development of effective methods for protecting fish from invasion by microbial pathogens. Recently, we have demonstrated that the introduction of cecropin transgenes into Japanese medaka (Oryzias latipes) conferred resistance to infection by fish bacterial pathogens. Aside from a few reports documenting the antiviral effect of antimicrobial peptides including cecropins against mammalian viruses, there is no evidence for the effect of these peptides against fish viruses. In this article we present results of in vitro characterization of native cecropin B and a synthetic analogue, CF17, against several important fish viral pathogens—namely, infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic septicemia virus (VHSV), snakehead rhabdovirus (SHRV), and infectious pancreatic necrosis virus (IPNV). Upon coincubation of these peptides and viruses, the viral titers yielded in fish cells were reduced from several fold to 104-fold. Direct disruption of the viral envelope and disintegration of the viral capsids may be involved in the inhibition of viral replication by the peptides. Results of our studies demonstrate the potential of manipulating antimicrobial peptide genes by transgenesis to combat viral infection in fish.
Relation: 4
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45350
Appears in Collections:[水產養殖學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback