English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28588/40619
Visitors : 4127851      Online Users : 88
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45280

Title: Long term trends and dynamics of dissolved organic carbon (DOC) in a subtropical reservoir basin
Authors: Ming Fai Chow;Chao-Chen Lai;Hsiang-Yi Kuo;Chih-Hsien Lin;Tzong-Yueh Chen;Fuh-Kwo Shiah
Contributors: 國立臺灣海洋大學:海洋環境與生態研究所
Keywords: atmospheric deposition;dissolved organic carbon;stream;subtropical reservoir;long term trends
Date: 2017
Issue Date: 2018-03-08T06:43:46Z
Publisher: Water
Abstract: Abstract:This study evaluates the long term trends and seasonal patterns of dissolved organic carbon (DOC) concentration in the Fei-Tsui Reservoir basin in Northern Taiwan during the period of 2000 to 2015. The non-parametric seasonal Mann-Kendall test was conducted to identify the trends of DOC and its potential drivers (e.g., temperature, runoff, atmospheric acid deposition and stream water chemistry). The monthly tributaries and water surface DOC concentrations in Fei-Tsui Reservoir had showed strong temporal and seasonal variability. The sulfate (SO4) concentration had exhibited statistically significant decreasing trend over a period of 16 years. The decreasing trends of anions (SO4 and NO3) and base cations (Ca and Mg) as well as increasing trends of pH and acidification index (ACI) in Fei-Tsui Reservoir and streams indicated recovery from acidification. However, there was no significant annual trend in DOC concentration of Fei-Tsui Reservoir and streams. Significant positive correlation was obtained between DOC and trophic state index of Fei-Tsui Reservoir. The results suggested that DOC concentration at the water surface of Fei-Tsui Reservoir was mainly driven by the re-oligotrophication and temperature effects rather than a decrease in atmospheric sulfur deposition. Stream DOC concentration was largely determined by the temporal variability in temperature and rainfall. We concluded that climatic and hydrological factors are the dominant drivers for stream DOC dynamics in the study.
Relation: 9(7) pp.545
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45280
Appears in Collections:[海洋環境與生態研究所] 期刊論文

Files in This Item:

There are no files associated with this item.

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback