English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26992/38793
Visitors : 2386063      Online Users : 29
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45155

Title: Latent semantic learning with time-series cross correlation analysis for video scene detection and classification
Authors: Shyi-Chyi Cheng
Jui-Yuan Su
Kuei-Fang Hsiao
Habib F. Rashvand
Contributors: 國立臺灣海洋大學:資訊工程學系
NTOU:Department of Computer Science and Engineering
Keywords: Time-series cross correlation analysis
Dynamic scene model
K-medoids clustering
Dynamic programming
Date: 2016-10
Issue Date: 2018-01-30T07:21:11Z
Publisher: Multimedia Tools and Applications
Abstract: Abstract:
This paper presents a novel, latent semantic learning method based on the proposed time-series cross correlation analysis for extracting a discriminative dynamic scene model to address the recognition problems of video event recognition and 3D human body gesture. Typical dynamic texture analysis poses the problems of modeling, learning, recognizing and synthesizing the images of dynamic scenes based on the autoregressive moving average (ARMA) model. Instead of applying the ARMA approach to capture the temporal structure of video sequences, this algorithm uses the learned dynamic scene model to semantically transform video sequences into multiple scenes with a lower computational effort. Therefore, to generate a discriminative dynamic scene model with space-time information preserved is crucial for the success of the proposed latent semantic learning. To achieve the goal, the k-medoids clustering with appearance distance metrics first used to partition all frames of training video sequences, regardless of their scene types, to provide an initial key-frame codebook. To discover the temporal structure of the dynamic scene model, we develop a time-series cross correlation analysis (TSCCA) to the latent semantic learning, with an alternating dynamic programing (ADP) to embed the time relationship between the training images into the dynamic scene model. We also tackle the problem of dynamic programming, which is supposed to produce large temporal misalignment for periodic activities. Moreover, the discriminative power of the model is estimated by a deterministic projection-based learning algorithm. Finally, based on the learned dynamic scene model, this paper uses a support vector machine (SVM) with a two-channel string kernel for video scene classification. Two test datasets, one for video event classification and the other for 3D human body gesture recognition, are used to verify the effectiveness of the proposed approach. Experimental results demonstrate that the proposed algorithm obtains good performance in terms of classification accuracy.
Relation: 75(20), pp.12919-12940
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45155
Appears in Collections:[資訊工程學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback