National Taiwan Ocean University Institutional Repository:Item 987654321/44266
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40652
Visitors : 754300      Online Users : 53
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item:

Title: Molecular Identification of a Unique Heparin Binding Motif Derived from Human RNase3
Authors: Ping-Hsueh Kuo
Chien-Jung Chen
Pei-Chun Lien
HsiuHui Chang
Shun-lung Fang
Margaret Dah-Tsyr Chang
Tun-Wen Pai
Contributors: 國立臺灣海洋大學:資訊工程學系
NTOU:Department of Computer Science and Engineering
Keywords: Peptides
Immune system
Amino acids
Date: 2012-07
Issue Date: 2017-11-20T08:32:29Z
Publisher: The 6th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS 2012)
Abstract: Abstract:Human ribonuclease A (hRNaseA) super family members have similar biological functions such as catalytic activities against specific RNA substrates. However, these enzymes with high sequence similarity may exhibit divergent physiological functions other than RNase activity, for example, angio genesis and innate immunity. In our investigation, a novel heparin-binding motif (HBM), RWRCK, identified from hRNase3 contributed to specific protein-heparin/heparan sulfate (HS) interaction. Based on this core HBM sequence, a 10-amino acid heparin binding peptide (HBPRNase3), NYRWRCKNQN, has been designed and characterized. Employing Clustal W2 and Uniprot Blastn program, such HBP pattern is found to be conserved in human and higher primates. Multiple sequence alignment of 13 members of human RNase A family reveals that HBP regions in hRNase2 and hRNase8 share 80% and 50% sequence identity to HBPRNase3, but the corresponding sequences of Gorilla and Pan troglodytes RNase3 are 100% identical, strongly suggesting that HBPRNase3 is conserved in higher primates along with species evolution. Interestingly, the putative HBPRNase2, NYQRRCKNQN, shows much lower heparin binding activity than HBPRNase3. In summary, HBPRNase3 is not a conserved motif in RNaseA superfamily, but it is a unique motif presenting in higher primates to play a crucial role in molecular interaction to heparin and HS.
Appears in Collections:[Department of Computer Science and Engineering] Lecture & Seminar

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback