English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26999/38800
Visitors : 2399972      Online Users : 57
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/43960

Title: Impacts of increasing dissolved inorganic nitrogen discharge from Changjiang on primary production and seafloor oxygen demand in the East China Sea from 1970 to 2002
Authors: Kon-KeeLiu;WeijinYan;Hung-JenLee;Shenn-YuChao;Gwo-ChingGong;Tzu-YingYeh
Contributors: 國立臺灣海洋大學:海洋環境資訊系
Keywords: East China Sea;Changjiang nutrient discharge;Biogeochemical modeling;Primary production;Hypoxia
Date: 2015-01
Issue Date: 2017-11-07T08:43:07Z
Publisher: Journal of Marine Systems
Abstract: Abstract:In recent years, benthic hypoxia has been observed in the outflow region of the Changjiang River in the East China Sea. Because the nitrogen input to the Changjiang watershed, mainly from human activities, has increased by 3 fold in the last four decades and the nitrogen load had grown exponentially, it is speculated that anthropogenic nutrients may be responsible for the hypoxia in the East China Sea shelf. We employ a coupled 3-D physical–biogeochemical model of the East China Sea to investigate how the changing Changjiang nutrient loads from 1970 to the end of 2002 may have impacted on primary production in the water column and the seafloor oxygen demand (SOD) on the seafloor. The model predicts an average value of 437 mgC m− 2 d− 1 for primary production and 10.0 mmol O2 m− 2 d− 1 for SOD for the ECS shelf over the entire modeling period. The model results compare reasonably with observations during the period from December 1997 to October 1998. Responding to the increase of the Changjiang DIN loading by a factor of ~ 2.4, the modeled primary production in the East China Sea shelf has increased by 17%, and the modeled SOD by 22%. In the inner shelf, where the impact is the strongest, the SOD increases by 30%. We are able to identify areas of potential hypoxia using two criteria: SOD > 30 mmol O2 m− 2 d− 1 and water depth > 25 m. The maximum area of potential hypoxic region in any month of a year has increased dramatically after 1991; the change appears related to the Changjiang DIN loads from May to July that showed a sudden increase after 1990. The responses in potential hypoxic area are more pronounced than the increases in DIN (dissolved inorganic nitrogen) loads, suggesting strong nonlinear effect in the development of hypoxia, which warrants further investigation. It is cautioned that the SOD calculation was based on the Redfield C/N ratio, but the actual C/N ratio may deviate from it. Direct observations of the sediment oxygen consumption are needed to validate our modeling approach. We also assessed the potential impacts of particulate organic matter from Changjiang by introducing a load of reactive particulate nitrogen (PN), which was assumed proportional to DIN based on estimated yields in the watershed. The modeled impacts on primary productivity and SOD are significant, but more accurate quantification of the monthly PN load and better characterization of its reactivity are required for better assessment.
Relation: 141, pp.200-217
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/43960
Appears in Collections:[海洋環境資訊系] 期刊論文

Files in This Item:

There are no files associated with this item.



All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback