English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26987/38787
Visitors : 2298095      Online Users : 72
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/43555

Title: Molecular Evolution of Multiple-Level Control of Heme Biosynthesis Pathway in Animal Kingdom
Authors: Wen-Shyong Tzou;Ying Chu;Tzung-Yi Lin;Chin-Hwa Hu;Tun-Wen Pai;Hsin-Fu Liu;Han-Jia Lin;Ildeofonso Cases;Ana Rojas;Mayka Sanchez;Zong-Ye You;Ming-Wei Hsu
Contributors: 國立臺灣海洋大學:生命科學系
Date: 2014-01-28
Issue Date: 2017-09-21T07:26:58Z
Publisher: PLoS ONE
Abstract: Abstract:Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5′ untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway.
Relation: 9(1), e86718
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/43555
Appears in Collections:[生命科學系] 專利

Files in This Item:

File Description SizeFormat
index.html0KbHTML47View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback