English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40652
Visitors : 762583      Online Users : 60
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/43468

Title: Production of homozygous transgenic rainbow trout with enhanced disease resistance
Authors: Pinwen Peter Chiou;Maria J. Chen;Chun-Mean Lin;Jenny Khoo;Jon Larson;Rich Holt;Jo-Ann Leong;Gary Thorgarrd;Thomas T. Chen
Contributors: 國立臺灣海洋大學:水產養殖學系
Keywords: Cecropin P1;Antimicrobial peptide;Transgenic rainbow trout;Disease resistant;Sperm-mediated gene transfer;Electroporation
Date: 2013-10-02
Issue Date: 2017-08-15T08:14:19Z
Publisher: Mar Biotechnol (NY)
Abstract: Abstract:Previous studies conducted in our laboratory showed that transgenic medaka expressing cecropin B transgenes exhibited resistant characteristic to fish bacterial pathogens, Pseudomonas fluorescens and Vibrio anguillarum. To confirm whether antimicrobial peptide gene will also exhibit anti-bacterial and anti-viral characteristics in aquaculture important fish species, we produced transgenic rainbow trout expressing cecropin P1 or a synthetic cecropin B analog, CF-17, transgene by sperm-mediated gene transfer method. About 30 % of fish recovered from electroporation were shown to carry the transgene as determined by polymerase chain reaction (PCR) amplification assay. Positive P1 transgenic fish were crossed to non-transgenic fish to establish F1 transgenic founder families, and subsequently generating F2, and F3 progeny. Expression of cecropin P1 and CF-17 transgenes was detected in transgenic fish by reverse transcription (RT)-PCR analysis. The distribution of body sizes among F1 transgenic fish were not significantly different from those of non-transgenic fish. Results of challenge studies revealed that many families of F2 and F3 transgenic fish exhibited resistance to infection by Aeromonas salmonicida and infectious hematopoietic necrosis virus (IHNV). All-male homozygous cecropin P1 transgenic families were produced by androgenesis from sperm of F3 heterozygous transgenic fish in one generation. The resistant characteristic to A. salmonicida was confirmed in progeny derived from the outcross of all-male fish to non-transgenic females. Results of our current studies confirmed the possibility of producing disease-resistant homozygous rainbow trout strains by transgenesis of cecropin P1 or CF-17 gene and followed by androgenesis.
Relation: 16(3), pp.299-308
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/43468
Appears in Collections:[水產養殖學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback