English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 646721      Online Users : 52
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/43422

Title: The acute salinity changes activate the dual pathways of endocrine responses in the brain and pituitary of tilapia
Authors: AdimoolamAruna;GanesanNagarajana;Ching-FongChang
Contributors: 國立臺灣海洋大學:水產養殖學系
Keywords: Salinity stress;Osmoregulationcrh;Corticosteroid receptorsigf-1
Date: 2015-01
Issue Date: 2017-08-07T03:19:01Z
Publisher: General and Comparative Endocrinology
Abstract: Abstract:To analyze and compare the stress and osmoregulatory hormones and receptors in pituitary during acute salinity changes, the expression patterns of corticotropin releasing hormone (crh) in hypothalamus, prolactin (prl) releasing peptide (pRrp) in telencephalon and diencephalon, glucocorticoid receptors 2 (gr2), and mineralocorticoid receptor (mr), crh-r, pro-opiomelanocorticotropin (pomc), pRrp, prl, dopamine 2 receptor (d2-r), growth hormone (gh), gh-receptor (gh-r) and insulin-like growth hormone (igf-1) transcripts in pituitary were characterized in euryhaline tilapia. The results indicate that the crh transcripts increased in the hypothalamus and rostral pars distalis of the pituitary after the transfer of fish to SW. Similarly, the pRrp transcripts were more abundant in SW acclimated tilapia forebrain and hypothalamus. The crh-r, gr2 and mr transcripts were more expressed in rostral pars distalis and pars intermedia of pituitary at SW than FW tilapia. The data indicate that the SW acclimation stimulates these transcripts in the specific regions of the brain and pituitary which may be related to the activation of the hypothalamic–pituitary–interrenal (HPI)-axis. The results of dual in situ hybridization reveal that the transcripts of crh-r, gr2 and mr with pomc are highly co-localized in corticotrophs of pituitary. Furthermore, we demonstrate high expression of pRrp in the brain and low expression of pRrp and prl transcripts in the pituitary of SW fish. No crh-r and corticosteroid receptors were co-localized with prl transcripts in the pituitary. The gh-r and igf-1 mRNA levels were significantly increased in SW acclimated tilapia pituitary whereas there was no difference in the gh mRNA levels. The data suggest that the locally produced pRrp and d2-r may control and regulate the expression of prl mRNA in pituitary. Therefore, the dual roles of pRrp are involved in the stress (via brain-pituitary) and osmoregulatory (via pituitary) pathways in tilapia exposed to acute salinity changes.
Relation: 211, pp.154-165
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/43422
Appears in Collections:[水產養殖學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback