English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28588/40619
Visitors : 4109305      Online Users : 50
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/43418

Title: Oocytes Survive in the Testis By Altering the Soma Fate from Male to Female in the Protandrous Black Porgy
Authors: Wu GC
Chang CF
Contributors: 國立臺灣海洋大學:水產養殖學系
Date: 2013
Issue Date: 2017-08-03T03:56:29Z
Publisher: Biol Reprod
Abstract: Abstract:In fish, hermaphroditism is derived from gonochorism. No ancient ancestry and no single sex-determining mechanism are involved in the hermaphroditic fish. Furthermore, hermaphroditic fish have a common set of transcriptional regulators that are involved in gonadal differentiation. However, the origins and evolution of hermaphroditism in fish remain far from understood. In the protandrous black porgy (Acanthopagrus schlegeli Bleeker), the ovotestis is separated by connective tissue, and no intersex (ectopic germ cell) characteristics are observed in either part. We generated the abnormal testicular part of the ovotestis with estradiol-17beta (E2) treatment, in which newly regenerated testis has ectopic oocytes. In this study, we performed a detailed phenotypic and molecular analysis of these E2-induced ectopic oocytes in the testicular part of the ovotestis. We showed that the oocytes in the regenerated testis do not undergo apoptosis; thus, a number of oocytes are in the testis. In these oocytes, Figla has a prolonged expression with ectopic expression of Cyp19a1a. Strikingly, the cells surrounding the oocytes are Dmrt1-positive cells (putative Sertoli cells) with high Figla expression in the oocytes at an early stage. Then, as the Dmrt1 expression diminishes, Cyp19a1a-positive cells (putative follicle cells) with low Figla expression appear in the oocytes at a later stage. This finding indicates that oocytes are competent to create a microenvironment to protect against a testicular environment in black porgy fish. Furthermore, Figla likely is the key factor in the pathway of Sertoli cell transformation into follicle-like cells. These results shed light on why the presence of more than one sex at a time existed during an evolutionary transition from gonochorism to hermaphroditism in fish.
Relation: 26
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/43418
Appears in Collections:[水產養殖學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback