English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27228/39071
Visitors : 2411323      Online Users : 68
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/43215

Title: Two-step strain analysis of self-assembled InAs/GaAs quantum dots
Authors: M K Kuo;T R Lin;K B Hong;B T Liao;H T Lee;C H Yu
Contributors: 國立臺灣海洋大學:機械與機電工程學系
Date: 2006
Issue Date: 2017-06-09T03:21:50Z
Publisher: Semiconductor Science and Technology
Abstract: Abstract:Strain effects on optical properties of self-assembled InAs/GaAs quantum dots grown by epitaxy are investigated. Since a capping layer is added after the self-assembly process of the quantum dots, it might be reasonable to assume that the capping layer neither experiences nor affects the induced deformation of quantum dots during the self-assembly process. A new two-step model is proposed to analyse the three-dimensional induced strain fields of quantum dots. The model is based on the theory of linear elasticity and takes into account the sequence of the fabrication process of quantum dots. In the first step, the heterostructure system of quantum dots without the capping layer is considered. The mismatch of lattice constants between the wetting layer and the substrate is the driving source for the induced elastic strain. The strain field obtained in the first step is then treated as an initial strain for the whole heterostructure system, with the capping layer, in the second step. The strain from the two-step analysis is then incorporated into a steady-state effective-mass Schrödinger equation. The energy levels as well as the wavefunctions of both the electron and the hole are calculated. The numerical results show that the strain field from this new two-step model is significantly different from models where the sequence of the fabrication process is completely omitted. The calculated optical wavelength from this new model agrees well with previous experimental photoluminescence data from other studies. It seems reasonable to conclude that the proposed two-step strain analysis is crucial for future optical analysis and applications.
Relation: 21, pp.626-632
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/43215
Appears in Collections:[機械與機電工程學系] 期刊論文

Files in This Item:

There are no files associated with this item.

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback