National Taiwan Ocean University Institutional Repository:Item 987654321/43014
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2357179      Online Users : 32
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/43014

Title: 克氏代數值之邊界積分方程搭配柯西型核函數的一些工程應用
Application of the Clifford algebra valued boundary integral equations with Cauchy-type kernels to some engineering problems
Authors: Lee, Jia-Wei
李家瑋
Contributors: NTOU:Department of Harbor and River Engineering
國立臺灣海洋大學:河海工程學系
Keywords: 複變數邊界積分方程;克氏代數;克氏代數值邊界積分方程;柯西型核函數
complex variable boundary integral equation,;Clifford algebra;Clifford algebra valued boundary integral equation;Cauchy-type kernels
Date: 2016
Issue Date: 2017-05-24T08:40:35Z
Abstract: 基於傳統柯西(Cauchy)積分公式的傳統複變數邊界積分方程求解二維問題是非常合適且強而有力,尤其當未知函數是一個複數值的全純函數。換句話說,此未知函數需滿足柯西-黎曼(Cauchy-Riemann)方程式。然而大部分的實際工程問題是三維問題且不一定滿足柯西-黎曼方程式,因此本論文有兩個目標,其中一個是延伸傳統複變數邊界積分方程求解未知函數為非複數值全純函數的二維問題。另一個則是推導出即使在三維空間仍保有一些複變數特性的廣義邊界積分方程。對於延伸傳統複變數邊界積分方程,本文使用Borel-Pompeiu公式來導得廣義複變數邊界積分方程,以這種方式扭轉問題能以兩個剪應力場為狀態函數來直接求解,此外扭轉剛度也可一併求得。由於複變函數受限於僅適用於二維的問題,本文引入克氏(Clifford)代數與克氏(Clifford)分析來取代複變數處理三維問題,克氏代數可以看成複變數或者是四元數的延伸,且克氏分析也可稱之為超複變分析。本文利用了克氏代數值的斯托克斯(Stokes)定理推導出含柯西(Cauchy)型核函數的克氏代數值邊界積分方程,如此一來,一些含多個未知場量的三維問題可以直接被求解。最後本文則考慮一些電磁波散射問題來檢驗克氏代數值邊界積分方程的正確性。
The conventional complex variable boundary integral equation (CVBIE) based on the conventional Cauchy integral formula is powerful and suitable to solve two-dimensional problems. In particular, the unknown function is a complex-valued holomorphic function. In other words, the unknown function satisfies the Cauchy-Riemann equations. However, the most part of practical engineering problems are three-dimensional problems and do not necessarily satisfies Cauchy-Riemann equations. Therefore, there are two targets in this dissertation. One is to extend the conventional CVBIE to solve two-dimensional problems for which the unknown function is not a complex-valued holomorphic function. The other is to extend to three-dimensions and derive an extended BIE still preserving some properties of complex variables in the three-dimensional state. For the extension of the conventional CVBIE, we employ the Borel-Pompeiu formula to derive the generalized CVBIE. In this way, the torsion problems can be solved in the state of two shear stress fields directly. In addition, the torsional rigidity can also be determined simultaneously. Since the theory of complex variables has a limitation that is only suitable for 2-dimensional problems, we introduce Clifford algebra and Clifford analysis to replace complex variables to deal with 3-dimensional problems. Clifford algebra can be seen as an extension of complex or quaternionic algebras. Clifford analysis is also known as hypercomplex analysis. We apply the Clifford algebra valued Stokes' theorem to derive Clifford algebra valued BIEs with Cauchy-type kernels. In this way, some three-dimensional problem with multiple unknown fields may be solved straightforward. Finally, several electromagnetic scattering problems are considered to check the validity of the derived Clifford algebra valued BIEs.
URI: http://ethesys.lib.ntou.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=G0029952008.id
http://ntour.ntou.edu.tw:8080/ir/handle/987654321/43014
Appears in Collections:[Department of Harbor and River Engineering] Dissertations and Theses

Files in This Item:

File Description SizeFormat
index.html0KbHTML26View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback