English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28588/40619
Visitors : 4188105      Online Users : 48
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/42494

Title: Numerical analysis of acoustic modes using the linear least squares method of fundamental solutions
Authors: C.C. Tsai;D.L. Young;C.L. Chiu;C.M. Fan
Contributors: 國立臺灣海洋大學:河海工程學系
Date: 2009-07-24
Issue Date: 2017-05-18T01:52:12Z
Publisher: Journal of Sound and Vibration
Abstract: Abstract:The method of fundamental solutions (MFS) has been proved to be an accurate and efficient meshless numerical method to solve acoustic eigenproblems. Traditionally, the technique of the singular value decomposition (SVD) is employed to obtain the corresponding contours of acoustical modes after the eigenvalues are solved. However, it is found that the mode shapes are sensitive to the source locations of the MFS. In this paper, we try to derive a robust meshless numerical scheme to obtain the contours of acoustical modes based on the linear least squares method of fundamental solutions (LSMFS) by specifying an additional normalized dual boundary condition. The failure for determining the mode shapes by specifying a normalized data at boundary locations near or on the nodes are examined. Moreover, it is demonstrated that the mode shapes of degenerate eigenmodes can be distinguished by specifying the boundary data at different boundary points. Furthermore, a normalization procedure is introduced for degenerate eigenmodes. Three numerical experiments with regular and irregular boundaries are carried out to validate the proposed method. Mode shapes obtained by the linear LSMFS are in good agreement with the analytical solutions and also the results obtained by the finite element method. In addition, the robustness and accuracy of the eigenvalues obtained with respect to different locations of source points by the linear LSMFS in conjunction with direct determinant search method are also revisited.
Relation: 324(3-5), pp.1086-1110
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/42494
Appears in Collections:[河海工程學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback