English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27320/39164
Visitors : 2475538      Online Users : 33
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/42150

Title: Modal analysis of multi-layer structure for chemical mechanical polishing process
Authors: Jinn-Tong Chiu;Yeou-Yih Lin
Contributors: 國立臺灣海洋大學:系統工程暨造船學系
Keywords: Finite element method;Wafer;Stress;Nonuniformity;Modal analysis
Date: 2008-04
Issue Date: 2017-04-27T03:44:46Z
Publisher: The International Journal of Advanced Manufacturing Technology
Abstract: Abstract:In this study, a three-dimensional finite element model was established to perform modal analysis of the chemical mechanical polishing process. The contact boundary conditions were considered in the wafer and pad, and the influence of the static load exerted on the carrier was considered in order to investigate dynamic behaviour of the wafer. The analysis was in two steps. Firstly, a given pressure was exerted on the carrier and the geometric nonlinear effect and large deformation theory were used to carry out static analysis. Secondly, the results of the analysis were used to perform modal analysis of the wafer. The results gave way to four conclusions. (1) Due to the offset configuration of the wafer and pad, the von Mises stress distribution was asymmetric. Therefore, the stress on the wafer appeared to be almost uniform near its centre, goes through a maximum near the edge, and decreased as the edge is approached. This tendency is similar to that of the removal rate profile experiment, which proved that the proposed finite element model for CMP is acceptable. (2) Due to the extremely thin thickness of the film, wafer and pad, most mode shapes are predominant in out-plane deformation. Furthermore, since the y-axis is symmetric in the three-dimensional model, there were double roots in some modes. (3) When the load was larger, the tangent stiffness and the natural frequency would also be reduced. The pressure changes did not have much affect on mode shape. (4) Since the soft materials of the pad and film have significantly different Young’s modulus’ than hard materials, the natural frequencies of harder materials for the pad and film increase.
Relation: 37(1),pp.83-91
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/42150
Appears in Collections:[系統工程暨造船學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML41View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback