English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27320/39164
Visitors : 2479203      Online Users : 29
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/42146

Title: Optimization of carrier morphology in terms of Fourier sine series for chemical mechanical polishing process
Authors: Jinn-Tong Chiu;Yeou-Yih Lin
Contributors: The International Journal of Advanced Manufacturing Technology
Keywords: Chemical mechanical polishing process;Finite element method;Wafer;Stress;Nonuniformity;Optimization
Date: 2007-10
Issue Date: 2017-04-27T02:43:53Z
Abstract: Abstract:To establish a 2D axisymmetric quasi–static finite element model during the chemical mechanical polishing process, revolutions of the wafer and the pad were assumed to be the same, the axisymmetric uniformly distributed pressure form was given, and both the wafer–pad interface and wafer–film interface were considered as contact boundaries. Next, the height of the contact interface between the carrier and the film near the zone of nonuniform von Mises stress distribution of the wafer surface was changed to the form of a Fourier sine series. Finally, a quadratic programming method was utilized to solve the coefficients of the Fourier sine series and then an optimal morphology in terms of Fourier sine series under the condition of minimum nonuniformity of the wafer surface was achieved. The result found that the nonuniformity was reduced remarkably and its improved rate reaches 88.45% under the optimal surface of the carrier.
Relation: 39(3),pp.414-420
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/42146
Appears in Collections:[系統工程暨造船學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback