National Taiwan Ocean University Institutional Repository:Item 987654321/41937
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 28588/40619
造访人次 : 4189313      在线人数 : 41
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 进阶搜寻


题名: Automated Fault Classification of Reciprocating Compressors from Vibration Data: A Case Study on Optimization using Genetic Algorithm
作者: Yih-Hwang Lin;Wen-Sheng Lee;Chung-Yung Wu
贡献者: 國立臺灣海'洋大學:機械與機電工程學系
关键词: Fault Classification;Reciprocating Compressor;Genetic Algorithm
日期: 2014
上传时间: 2017-04-14
出版者: Procedia Engineering
摘要: Abstract:This article deals with automated fault classification of reciprocating compressors from vibration data. The genetic algorithm was applied to automate the process. A total of 15 fault cases based on practical observation of the machine faults was considered. Vibration data for the various fault cases were collected and processed using the time-frequency analysis, namely the short time Fourier transform (STFT), the smoothed pseudo Wigner-Ville distribution (SPWVD), and the reassigned smoothed pseudo Wigner-Ville distribution (RSPWVD), due to the non-stationary vibration characteristics of the system analyzed. The fault features for the formidable amount of time-frequency data were extracted first and fed into an artificial neural network for fault classification. It is demonstrated in this work that it is feasible to apply the genetic algorithm to automate the fault classification process and thereby minimize the requirement for intervention from the human experts.
關聯: 79, pp.355-361
显示于类别:[機械與機電工程學系] 期刊論文





著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈