English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26987/38787
Visitors : 2292168      Online Users : 50
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/41506

Title: Anomalous hydrographic and biological conditions in the northern South China Sea during the 1997-98 El Niño and comparisons with the Equatorial Pacific
Authors: C.-M.Tseng;K.-K. Liu;L.-W Wang;G.-C. Gong
Contributors: 國立臺灣海洋大學:海洋環境化學與生態研究所
Date: 2009-12
Issue Date: 2017-02-23T03:03:27Z
Publisher: Deep Sea Research I
Abstract: Abstract:It is demonstrated that weakened wind mixing and strengthened water column stratification resulted in the anomalously low sea surface chlorophyll in the northern South China Sea during the 1997–1998 El Niño event. Remotely sensed sea surface temperature, wind and chlorophyll, which were validated by shipboard observations at the SouthEast Asian Time-series Study (SEATS) station (18°N, 116°E) in the northern South China Sea (SCS) provided the basis for this study. During the 1997–1998 winter at the SEATS station, the sea surface temperature was elevated by about 2 °C above the climatological mean, while the wind speed of the northeast monsoon was reduced from a climatological mean of 9.4 to 6.8 m/s. The concentration of surface chlorophyll-a dropped from 0.2 to 0.1 mg/m3. The monthly area-averaged integrated primary production estimated for the northern SCS area (112–119°E, 15–21°N) was reduced by about 40% of the normal winter value. Under the anomalously high sea surface temperature and weak monsoon, the mixed-layer depth would have been reduced from an average of 65 to 45 m and the nutrients in the mixed layer would have been reduced by half, according to observations at the SEATS station in more recent years. During the 1997–1998 El Niño event, the onset of warming in the northern SCS lagged behind that in the eastern equatorial Pacific by about 5 months and lingered for 11 months. This course of change resembled that of the western Pacific warm pool region. However, contrary to the northern SCS, the sea surface chlorophyll was enhanced in the warm pool region during the event, probably mainly because of the uplifted nutricline. Unlike the eastern equatorial Pacific, the dramatic recovery of biological production did not happen in the SCS in the summer of 1998. These distinctive biogeochemical responses reflect fundamental differences between the SCS and the equatorial Pacific in terms of upper water column dynamics.
Relation: , 2129-2143
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/41506
Appears in Collections:[海洋環境與生態研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML96View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback