English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28603/40634
Visitors : 4212656      Online Users : 32
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/41458

Title: Exploring vortex structures in orbital-angular-momentum beams generated from planar geometric modes with a mode converter
Authors: J. C. Tung;H. C. Liang;T. H. Lu;K. F. Huang;Y. F. Chen
Contributors: 國立臺灣海洋大學:光電科學研究所
Date: 2016
Issue Date: 2017-02-17T05:36:52Z
Publisher: Optics Express
Abstract: Abstract: It is theoretically demonstrated that the planar geometric mode with a π/2 mode converter, so called the circularly geometric mode, can be solved from the inhomogeneous Helmholtz equation by considering the pump distribution on the lasing mode. Theoretical analysis clearly reveal that the vortex structures of circularly geometric modes are determined by the minimum order of transverse lasing modes, the total number of transverse lasing modes and the degenerate condition in the cavity. Moreover, we experimentally manifest that the circularly geometric mode can be generated from the selective pumped solid-state laser with an external π/2 mode converter. To explore the vortex structures of the generated geometric modes, the interference patterns are performed by an experimental apparatus consisting of a Mach-Zehnder interferometer. The good agreement between experimental observations and numerical calculations confirms the analysis of vortex structures is reliable.
Relation: 24(20)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/41458
Appears in Collections:[光電科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback