English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2350887      Online Users : 27
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/41331

Title: Fabrication of Resistive Random Access Memory by Atomic Force Microscope Local Anodic Oxidation
Authors: Jeff Tsai;Chia-Yun Hsu;Chia-Hsiang Hsu;Chu-Shou Yang;Tai-Yuan Lin
Contributors: 國立臺灣海洋大學:光電科學研究所
Date: 2014
Issue Date: 2017-02-14T06:51:21Z
Publisher: Nano brief reports and reviews
Abstract: Abstract: The fabrication of gallium, zinc and nickel oxide nanodots for application of resistive random access memory (RRAM) was demonstrated using the atomic force microscopy (AFM) local anodic oxidation technique. Thin metal films were deposited on indium tin oxide conductive glass substrates. In the atmospheric environment, using AFM equipped with an Ag-coated probe can generate metal oxide nanodots locally on the metal films. These nanodots act as an insulator layer in a single unit cell of the RRAM. The voltage-biased method allows devices to reset from a low-resistance state (LRS) to a high-resistance state (HRS) at 0.9 V. These results show the ability of the AFM local anodic oxidation to produce 50 nm NiO nanodots on glass substrates for potentially high-density RRAMs. As we developed the characteristics of the structure, we found that a lateral NiO nanobelt RRAM performs very low power operation from such experimental manufacturing process. Using a current-biased method, the lateral device switches from a HRS to a LRS with a low writing voltage of 0.64 V.
Relation: 10(2)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/41331
Appears in Collections:[光電科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback