National Taiwan Ocean University Institutional Repository:Item 987654321/41322
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27221/39064
Visitors : 2404052      Online Users : 68
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/41322

Title: Nonlinear electro-mechanical responses of functionally graded piezoelectric beams
Authors: Chien-Hong Lin;Anastasia Muliana
Contributors: 國立臺灣海洋大學:機械與機電工學系
Keywords: A.Smart materials;B.Electrical properties;C.Micro-mechanics;C.Analytical modeling
Date: 2015-04
Issue Date: 2017-02-14T06:03:45Z
Publisher: Composites Part B: Engineering
Abstract: Abstract:This study presents analyses of the nonlinear electro-mechanical responses of functionally graded piezoelectric beams undergoing small deformation gradients. The studied functionally graded beams comprise of electro-active and inactive constituents with gradual compositions varying through the thickness of the beams. Two types nonlinear electro-mechanical responses are considered for the active constituents, which are nonlinear electro-mechanical behaviors for the polarized piezoelectric constituent under electric fields smaller than the coercive limit, and polarization switching responses due to cyclic electric fields with high amplitude. The inactive constituent is modeled with uncoupled linear electro-elastic response. The functionally graded beam is discretized into several graded layers through its thickness. Each layer is comprised of different compositions of the active (piezoelectric) inclusions and conductive matrix. A particle-unit-cell micromechanical model is used to obtain the nonlinear electro-mechanical responses in each layer and is integrated within the laminate theory in order to obtain the overall nonlinear electro-mechanical responses of the functionally graded piezoelectric beams. The numerical predictions are compared with experimental data available in literature. Parametric studies are then performed in order to examine the effects of the thickness of the beam, of the concentration of the constituent, and the frequency of the cyclic electric field on the overall electro-mechanical response of the functionally graded piezoelectric beams.
Relation: 72,pp.53-64
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/41322
Appears in Collections:[Department of Mechanical and Mechatronic Engineering] Periodical Articles

Files in This Item:

File Description SizeFormat
index.html0KbHTML47View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback