English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2329114      Online Users : 44
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/41267

Title: Merocyanines for vacuum-deposited small-molecule organic solar cell
Authors: Ko-Wei Chen
Chong-Wei Huang
Shao-Yu Lin
Yi-Hung Liu
Tanmay Chatterjee
Wen-Yi Hung
Shun-Wei Liu
Ken-Tsung Wong
Contributors: 國立臺灣海洋大學:光電科學研究所
Keywords: Organic photovoltaic
Merocyanine
Bulk heterojunction
Planar-mixed heterojunction
Small molecule organic solar cell
Date: 2015
Issue Date: 2017-02-13T05:45:44Z
Publisher: Organic Electronics
Abstract: Abstract: We report here synthesis and photovoltaic properties of three merocyanines dyes (DPPT, DTPT, 1-NPPT) which are functionalized with electron withdrawing thiazolidenemalononitrile and electron rich diarylamine functionalities. It is found that structural feature of the diarylamino groups has a profound effect on the physical properties such as the absorption spectrum, oxidation potential, and HOMO/LUMO energy levels. The compound DTPT containing a better electron-donating ditolyl group, exhibits red-shifted absorption with relatively higher molar extinction coefficient, indicating its better light-harvesting ability. Hole mobility of these compounds is found to be strongly dependent on the various intermolecular interactions. Interestingly, single crystal structures reveal that the crystal packing motifs are rather closely related to the observed hole mobility in a trend of DPPT > DTPT > 1-NPPT. Vacuum-processed small-molecule organic solar cells were fabricated using the title merocyanines as p-type materials (donor) in combination with fullerene (C60 or C70) as n-type material (acceptor) with various device configurations. Among them, the DPPT-based devices outperform the devices based on DTPT and 1-NPPT. The power conversion efficiency (PCE) of DPPT-based device was improved from 1.55% of a BHJ device to 2.63% of a PMHJ device and 3.52% of a PMHJ device without the thin donor layer.
Relation: 26
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/41267
Appears in Collections:[光電科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML41View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback