English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28607/40644
Visitors : 4800765      Online Users : 268
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/41129

Title: Speciation and Dynamics of Dissolved Inorganic Nitrogen Export in the Danshui River, Taiwan
Authors: Shih, Yu-Ting
Lee, Tsung-Yu
Huang, Jr-Chuan
Kao, Shuh-Ji
Shiah, Fuh-Kwo
Liu, Kon-Kee
Contributors: 國立臺灣海洋大學:海洋環境化學與生態研究所
Date: 2014-10
Issue Date: 2017-02-09T01:04:07Z
Publisher:  Biogeosciences
Abstract: Abstract: Human-induced excess nitrogen outflowing from land through rivers to oceans has resulted in serious impacts on terrestrial and coastal ecosystems. Oceania, which occupies < 2.5% of the global land surface, delivers 12% of the freshwater and dissolved materials to the ocean on a global scale. However, there are few empirical data sets on riverine dissolved inorganic nitrogen (DIN) fluxes in the region, and their dynamics are poorly understood. In this study, a river monitoring network covering different types of land uses and population densities was implemented to investigate the mechanism of DIN export. The results show that DIN concentration/yield varied from ∼20 μM/∼300 kg-N km−2 yr−1 to ∼378 μM/∼10 000 kg-N km−2 yr−1 from the relatively pristine headwaters to the populous estuary. Agriculture and population density control DIN export in less densely populated regions and urban areas, respectively, and runoff controls DIN at the watershed scale. Compared to documented estimates from global models, the observed DIN export from the Danshui River is 2.3 times larger, which results from the region-specific response of DIN yield to dense population and abundant runoff. The dominating DIN species change gradually from NO3− in the headwaters (∼97%) to NH4+ in the estuary (∼60%) following the urbanization gradient. The prominent existence of NH4+ is probably the result of the anaerobic water body and short residence time, unlike in large river basins. Given the analogous watershed characteristics of the Danshui River to the rivers in Oceania, our study could serve as a first example to examine riverine DIN fluxes in Oceania.
Relation: 11(19)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/41129
Appears in Collections:[海洋環境與生態研究所] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback