English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27248/39091
Visitors : 2417589      Online Users : 64
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40700

Title: Simulation of the fluorescence evolution of “live” oils from kerogens in a diamond anvil cell: Application to inclusion oils in terms of maturity and source
Authors: Ying-Ju Chang;Wuu-Liang Huang
Contributors: 國立臺灣海洋大學:應用地球科學研究所
Date: 2008-08
Issue Date: 2017-02-06T06:01:43Z
Publisher: Geochimica et Cosmochimica Acta
Abstract: Abstract: The evolution of fluorescence has been measured for "live" oils generated from 14 oil-prone kerogens or coals from varying depositional environments during closed system pyrolysis in a diamond anvil cell at three heating rates (3, 8, and 25 °C/min), and temperatures up to 600 °C. The measured fluorescence intensities of the samples, employing using violet excitation at 405 nm, increases significantly during maturation intervals within the oil window, while the fluorescence spectra of oils generated from all studied kerogens exhibit progressive blue-shift of peak wavelengths ( λmax) and red/green quotients ( I650/ I500) upon increasing maturity. The observed trend is consistent with a maturity dependence of the spectral shift, which is widely recognized in natural hydrocarbon inclusions and crude oils using ultraviolet (UV) excitation (365 nm). The data presented herein suggest that the λmax of spectra for inclusion oils shift in similar direction despite differences in composition or source kerogen. This implies that the reverse or anomalous trends reported for inclusion oils in nature may be attributed to other processes, which significantly alters the fluorescence properties of oils subsequent to their generation. Oils with the similar color ( λmax or I650/ I500) can be derived from diverse kerogens with maturities that vary by ±0.3% Ro, suggesting that the fluorescent colors of crude and inclusion oils are both maturity- and source-dependent, and therefore cannot be used as universal maturity indicators. In addition, the blue-shifts observed for cumulative oils generated from all kerogens approaches similar minima λmax values around the green-yellow wavelength (564 nm) and at I650/ I500 values around 0.6, at maturities close to the middle or late stage of oil generation. This suggests that most late-stage cumulative oils will exhibit similar colors. Oils generated during late-stage maturity intervals, however, can exhibit colors with shorter wavelengths.
Relation: 72(15)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40700
Appears in Collections:[應用地球科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML22View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback