English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 624630      Online Users : 66
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40516

Title: Application of differential evolutionary optimization methodology for parameter structure identification in groundwater modeling
Authors: Yung-Chia Chiu
Contributors: 國立臺灣海洋大學:應用地球科學研究所
Keywords: Taiwan
Differential evolution
Parameter structure identification
Inverse modeling
Groundwater flow
Date: 2014-12
Issue Date: 2017-01-19T06:47:51Z
Publisher: Hydrogeology Journal
Abstract: Abstract: Parameter structure identification is formulated in terms of solving an inverse problem, which allows for a determination of an appropriate level of parameter structure complexity, and the identification of its pattern and the associated parameter values. With the increasing complexity of parameter structure identification in groundwater modeling, demand for robust, fast, and accurate optimizers is on the rise among researchers from groundwater hydrology fields. A novel global optimizer, differential evolution (DE), has been proposed to solve the parameter-structure-identification problem. The Voronoi tessellation is adopted for the automatic parameterization. The stepwise regression method and the error covariance matrix are used to determine the optimal structure complexity. Numerical experiments with a continuous hydraulic conductivity distribution are conducted to demonstrate the proposed methodology. The results indicate that the DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters and mutation schemes implemented in the DE is employed to examine their influence on the objective function. The comparison between DE and genetic algorithm shows the advantage of DE in terms of robustness and efficiency. The proposed methodology is also applied to a real groundwater system, Pingtung Plain in Taiwan, and the properties of aquifers are successfully identified.
Relation: 22(8)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40516
Appears in Collections:[應用地球科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback