English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2345771      Online Users : 34
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40495

Title: SST phases in the open-ocean and margins of the tropical Pacific;implication on tropical climate dynamics
Authors: Y. Yokoyama
L.-J. Shiau
S. C. Clemens
M.-T. Chen
M. Yamamoto
Contributors: 國立臺灣海洋大學:應用地球科學研究所
Date: 2014-03
Issue Date: 2017-01-19T06:04:23Z
Publisher: Climate of the Past Discussions
Abstract: Abstract: The tropical Pacific exerts a major effect on the global climate system and might have driven large extra-tropical climate change. We present a 320 kyr high resolution UK'37-sea surface temperature (SST) record from core MD052928 (11°17.26' S, 148°51.60' E, water depth 2250 m) located off southeastern Papua New Guinea (PNG), in the western tropical Pacific. The age model of the core is based on AMS 14C dating of planktic foraminifers and correlation of benthic to the LR04 stack. The UK'37-SST ranges from 26.5 to 29 °C, showing glacial-interglacial and millennial variations. We assess the phase of the MD052928 UK'37-SST as part of a synthesis of five other SST records from the tropical Pacific at the precession, obliquity, and eccentricity bands. The SST records can be separated into two groups when considering SST phase relative to changes in orbital forcing, ice volume and greenhouse gases (GHGs). SST maxima at open-ocean sites within primary equatorial current systems occur between obliquity maxima and methane (CH4) maxima but early relative to ice volume minima and CO2 maxima at the obliquity band. In contrast, SST maxima at continental margin sites change are in phase with ice minima and CO2 maxima, likely influenced by the slow response of continental ice sheets and GHGs. At the precession band, the early group located on the Warm Pool area indicates a direct influenced by the local insolation, and with the similar phase progress as the obliquity band. These results indicate that the decreased high-low latitudes insolation gradient and increasing low latitude local insolation resulting in tropical Pacific SST rise. Higher SST would supply more moisture resulting in increased CH4 in the tropical wetlands. This promotes increasing CO2 and deglaciation leading to increase continental and continental margin surface temperatures.
Relation: 10(2)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40495
Appears in Collections:[應用地球科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML34View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback