National Taiwan Ocean University Institutional Repository:Item 987654321/40425
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40652
Visitors : 775235      Online Users : 57
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item:

Title: Conventional and Microwave Sintering Studies of SrTiO 3
Authors: Horng-Yi Chang;Kuo-Shung Liu;I-Nan Lin
Contributors: 國立臺灣海洋大學:輪機工程學系
Date: 2011-03-01
Issue Date: 2017-01-18T08:44:13Z
Publisher: Journal of Materials Research
Abstract: Abstract:Using the nonconventional sintering technique, such as microwave sintering, it is observed to enhance the densification rate of SrTiO3 materials as effectively as employing the highly active powders prepared by the chemical route. Although the chemically derived powders demonstrate better sinterability than the mixed oxide powders, the thermal analysis indicates that the segregation of Ti4+-containing clusters during decomposition of precursors in the direct pyrolysis (DP) process induces the occurrence of TiO2 particles (anatase phase) prior to the formation of SrTiO3 phase. These particles retard the necking process required to sinter the materials. The spray pyrolysis (SP) process can circumvent the preferential nucleation of TiO2 phase and, therefore, produce powders exhibiting superior sintering behavior to the DP-derived powders. The microwave sintering technique, on the other hand, substantially enhances the rate of diffusion of the ions in the materials such that even the mixed oxide powders can be sintered at a temperature about 200 °C lower than that needed to achieve the same density in a conventional sintering process. Fine grain (∼4 μm) microstructure is obtained for the materials microwave sintered at 1220 °C for 10 min. The migration of grain boundaries requires higher temperature to initiate than the formation of neckings between the grains. The grain growth occurs only when the material was sintered at temperatures higher than 1250 °C.
Relation: 10(8), pp.2052-2059
Appears in Collections:[Department of Marine Engineering] Periodical Articles

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback