English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26994/38795
Visitors : 2390328      Online Users : 138
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40226

Title: Prediction of reservoir water quality by using artificial neural network: A case study of Chlorophyll-a in Shihmen Reservoir
Authors: Li Chen
Chihchiang Wei
Chinming Kao
KeYing Hou
Contributors: 國立臺灣海洋大學:海洋環境資訊學系
Keywords: regression
Date: 2011
Issue Date: 2017-01-16T06:38:04Z
Publisher: Scientific Journal of Mathematics Research
Abstract: 本研究採用水庫月資料(從2004至2008年)預測石門水庫水體水質因子,預測時利用類神經網路及傳統回歸分析兩者方法,以影響因子視為模式之輸入參數,預測項目視為輸出因子,其中類神經網路係採用典型之倒傳遞類神經模式。本研究以葉綠素a為水質主要預測目標,找出相關影響因子建置適用於石門水庫優養化之預測模式,最後探討模式預測能力。結果顯示類神經網路預測當月份及下一個月份之效果優於線性回歸分析。
Abstract: This study analyzed monthly records of water quality from Shihmen Reservoir from 2004 to 2008 and predicted the reservoir water quality parameter by using both artificial neural network (ANN) and traditional linear regression method. The reaction behavior models were adopted to construct the relationships between the input and output variables. The main water quality parameter, chlorophyll-a, was analyzed to be used in our predictive model. These models then applied to predict the chlorophyll-a in Shihmen R
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40226
Appears in Collections:[海洋環境資訊系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback