English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27287/39131
Visitors : 2443912      Online Users : 33
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40177

Title: Soft computing techniques in ensemble precipitation nowcast
Authors: Chih-Chiang Wei
Contributors: 國立臺灣海洋大學:海洋環境資訊學系
Keywords: Forecast
Machine learning
Skill score
Date: 2013-02
Issue Date: 2017-01-16T03:08:22Z
Publisher: Applied Soft Computing
Abstract: Abstract: This study presented various soft computing techniques for forecasting the hourly precipitations during tropical cyclones. The purpose of the current study is to present a concise and synthesized documentation of the current level of skill of various models at precipitation forecasts. The techniques involve artificial neural networks (ANN) comprising the multilayer perceptron (MLP) with five training methods (denoted as ANN-1, ANN-2, ANN-3, ANN-4, and ANN-5), and decision trees including classification and regression tree (CART), Chi-squared automatic interaction detector (CHAID), and exhaustive CHAID (E-CHAID). The developed models were applied to the Shihmen Reservoir Watershed in Taiwan. The traditional statistical models including multiple linear regressions (MLR), and climatology average model (CLIM) were selected as the benchmarks and compared with these machine learning. A total of 157 typhoons affecting the watershed were collected. The measures used include numerical statistics and categorical statistics. The RMSE criterion was employed to assess the suitable scenario, while the categorical scores, bias, POD, FAR, HK, and ETS were based on the rain contingency table. Consequently, this study found that ANN and decision trees provide better prediction compared to traditional statistical models according to the various average skill scores.
Relation: 13(2)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40177
Appears in Collections:[海洋環境資訊系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback