English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28608/40649
Visitors : 6426882      Online Users : 47
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40175

Title: Cross-species identification of in silico microsatellite biomarkers for genetic disease
Authors: Hao-Teng Chang;Yu-Yang Lo;Jhen-Li Huang;Wei-Yong Lin;Tun-Wen Pai
Contributors: 國立臺灣海洋大學:資訊工程學系
Date: 2014
Issue Date: 2017-01-16T03:01:12Z
Publisher: BioMedicine
Abstract: Abstract: Microsatellites appear widely in genomes of diverse species. Variants of repeat number of microsatellites often correlate with risks of genetic disorder or severity of diseases. Using cross-species comparison, the proposed system comprehensively verifies microsatellites of specific genes related to 16 genetic disorders. Genomic information retrieved from 14 frequently used model organisms in biomedical study was thoroughly analyzed, emphasizing conserved and diverse traits. Features of microsatellite sequences among different organisms, including appearing frequency, position, pattern and distribution, could be determined automatically for stating genetically functional conservation and evolutionary correlation. This research found that among mammals and fishes, the microsatellite sequences are conserved in the genes of epidermal growth factor receptor, ataxia telangiectasia mutated and androgen receptor corresponding to cancers, ataxia telangiectasia and hepatocellular carcinoma, respectively. Still, except fruit fly conserved CAG repeats in Huntington and Spinocerebellar ataxia type 2 genes, no microsatellites were conserved in those genes linked to neurological/neurodegenerative disorders among mammal and fish species. In comparison of mammalian species, microsatellite biomarkers identified from 17 genetic disorder-related genes revealed high repeat conservation, especially in human, gorilla and macaque. Obviously, this comparative analysis illustrates microsatellite repeats affecting genetic disorders, highly correlated to evolutionary distance of species. Chief contribution of this in silico research lies in assisting biologists to identify disease-related microsatellite biomarkers and employ appropriate model organisms for further biomedical studies relying on microsatellite conservation information. Database http://ssrtc.cs.ntou.edu.tw is for academic use.
Relation: 4(14)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40175
Appears in Collections:[資訊工程學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback