English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27308/39152
Visitors : 2454068      Online Users : 275
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40169

Title: Improvement of typhoon precipitation forecast efficiency by coupling SSM/I microwave data with climatologic characteristics and precipitation
Authors: Chih-Chiang Wei
Contributors: 國立臺灣海洋大學:海洋環境資訊學系
Keywords: Neural networks
Forecasting
Hydrologic models
Date: 2013-06
Issue Date: 2017-01-16T02:52:07Z
Publisher: Weather and Forecasting
Abstract: Abstract: Prediction of flash floods in an accurate and timely fashion is one of the most important challenges in weather prediction. This study aims to address the rainfall prediction problem for quantitative precipitation forecasts over land during typhoons. To improve the efficiency of forecasting typhoon precipitation, this study develops Bayesian network (BN) and logistic regression (LR) models using three different datasets and examines their feasibility under different rain intensities. The study area is the watershed of the Tanshui River in Taiwan. The dataset includes a total of 70 typhoon events affecting the watershed from 1997 to 2008. For practicability, the three datasets used include climatologic characteristics of typhoons issued by the Central Weather Bureau (CWB), rainfall rates measured using automatic meteorological gauges in the watershed, and microwave data originated from Special Sensor Microwave Imager (SSM/I) radiometers. Five separate BN and LR models (cases), differentiated by a unique combination of input datasets, were tested, and their predicted rainfalls are compared in terms of skill scores including mean absolute error (MAE), RMSE, bias (BIA), equitable threat score (ETS), and precision (PRE). The results show that the case where all three input datasets are used is better than the other four cases. Moreover, LR can provide better predictions than BN, especially in flash rainfall situations. However, BN might be one of the most prominent approaches when considering the ease of knowledge interpretation. In contrast, LR describes associations, not causes, and does not explain the decision.
Relation: 28(3)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40169
Appears in Collections:[海洋環境資訊系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML48View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback