English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27228/39071
Visitors : 2413281      Online Users : 40
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40143

Title: Real-time forecast of reservoir inflow hydrographs incorporating terrain and monsoon effects during typhoon invasion by novel intelligent numerical-statistic impulse
Authors: Nien-Sheng Hsu
Chien-Lin Huang
Chih-Chiang Wei
Contributors: 國立臺灣海洋大學:海洋環境資訊學系
Date: 2015-03
Issue Date: 2017-01-16T01:40:31Z
Publisher: Journal of Hydrologic Engineering
Abstract: Abstract: This study develops an original methodology for forecasting real-time reservoir inflow hydrographs during typhoons, taking advantage of meteoro-hydrological methods such as analysis of typhoon hydrographs, numerical typhoon track forecasts, statistic typhoon central impulse-based quantitative precipitation forecasts model based on a real-time revised approach (TCI-RTQPF), real-time recurrent learning neural network (RTRLNN), and adaptive network-based fuzzy inference system (ANFIS). To derive the inflow hydrograph induced by interaction between typhoon rain bands, terrain, and monsoons, the inventive novel ensemble numerical-statistic impulse techniques are employed. The inflow during peak flow, inflection, and direct runoff ending (DRE) periods (impulse signal) are used for the deriving process. The hydrograph analysis is used to examine the mechanism between typhoon center location, wind field, precipitation, and the inflow hydrograph, and to establish the evaluation methods. Additionally, a novel total inflow forecast model is developed using image hashing and ANFIS for selecting optimal derived hydrograph. The experiment is conducted in the Tseng-Wen Reservoir basin, Taiwan. Results demonstrate that the wind field-based and moving dynamics-based approach of typhoon can effectively evaluate the time of peak flow, inflection point, and DRE incorporating terrain and monsoon effects. The effective functions for deriving impulse signal include blended polynomial, exponential, and power functions, and for deriving inflow hydrograph, multinomial Gaussian functions. Finally, the real-time experimental outcomes show that the proposed innovative practical methodology can accurately forecast the real-time reservoir inflow hydrograph that the average error of Typhoon Krosa is 7.81% within 32 h average forecasted lead time, and Typhoon Morakot, 9.78% within 79 h forecasted lead time.
Relation: 20(10)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40143
Appears in Collections:[海洋環境資訊系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML53View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback