English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2346251      Online Users : 34
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40137

Title: Multi-phase intelligent decision model for reservoir real-time flood control during typhoons
Authors: Nien-Sheng Hsu
Chien-Lin Huang
Chih-Chiang Wei
Contributors: 國立臺灣海洋大學:海洋環境資訊學系
Keywords: Reservoir inflow forecast
Reservoir real-time flood operation
Multi-phase flood control module
Adaptive Network-based Fuzzy Inference System
Real-Time Recurrent Learning Neural Network
Date: 2015-03
Issue Date: 2017-01-16T01:33:02Z
Publisher: Journal of Hydrology
Abstract: Abstract: This study applies an Adaptive Network-based Fuzzy Inference System (ANFIS) and a Real-Time Recurrent Learning Neural Network (RTRLNN) with an optimized reservoir release hydrograph using Mixed Integer Linear Programming (MILP) from historical typhoon events to develop a multi-phase intelligent real-time reservoir operation model for flood control. The flood control process is divided into three stages: (1) before flood (Stage I); (2) before peak flow (Stage II); and (3) after peak flow (Stage III). The models are then constructed with either three phase modules (ANFIS-3P and RTRLNN-3P) or two phase (Stage I + II and Stage III) modules (ANFIS-2P and RTRLNN-2P). The multi-phase modules are developed with consideration of the difference in operational decision mechanisms, decision information, release functions, and targets between each flood control stage to solve the problem of time-consuming computation and difficult system integration of MILP. In addition, the model inputs include the coupled short lead time and total reservoir inflow forecast information that are developed using radar- and satellite-based meteorological monitoring techniques, forecasted typhoon tracks, meteorological image similarity analysis, ANFIS and RTRLNN. This study uses the Tseng-Wen Reservoir basin as the study area, and the model results showed that RTRLNN outperformed ANFIS in the simulated outcomes from the optimized hydrographs. This study also applies the models to Typhoons Kalmaegi and Morakot to compare the simulations to historical operations. From the operation results, the RTRLNN-3P model is better than RTRLNN-2P and historical operations. Further, because the RTRLNN-3P model combines the innovative multi-phase module with monitored and forecasted decision information, the operation can simultaneously, effectively and automatically achieve the dual goals of flood detention at peak flow periods and water supply at the end of a typhoon event.
Relation: 522
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40137
Appears in Collections:[海洋環境資訊系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback