English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27228/39071
Visitors : 2412299      Online Users : 72
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40124

Title: Coupled heuristic prediction of long lead-time accumulated total inflow of a reservoir during typhoons using deterministic recurrent and fuzzy inference-based neural network
Authors: Chien-Lin Huang
Nien-Sheng Hsu
Chih-Chiang Wei
Contributors: 國立臺灣海洋大學:海洋環境資訊學系
Keywords: adaptive network-based fuzzy inference system
accumulated total reservoir inflow
long lead-time hydrograph prediction
coupled heuristic inputs
real-time recurrent learning neural network
Date: 2015-11
Issue Date: 2017-01-16T01:03:55Z
Publisher: Water
Abstract: Abstract: This study applies Real-Time Recurrent Learning Neural Network (RTRLNN) and Adaptive Network-based Fuzzy Inference System (ANFIS) with novel heuristic techniques to develop an advanced prediction model of accumulated total inflow of a reservoir in order to solve the difficulties of future long lead-time highly varied uncertainty during typhoon attacks while using a real-time forecast. For promoting the temporal-spatial forecasted precision, the following original specialized heuristic inputs were coupled: observed-predicted inflow increase/decrease (OPIID) rate, total precipitation, and duration from current time to the time of maximum precipitation and direct runoff ending (DRE). This study also investigated the temporal-spatial forecasted error feature to assess the feasibility of the developed models, and analyzed the output sensitivity of both single and combined heuristic inputs to determine whether the heuristic model is susceptible to the impact of future forecasted uncertainty/errors. Validation results showed that the long lead-time–predicted accuracy and stability of the RTRLNN-based accumulated total inflow model are better than that of the ANFIS-based model because of the real-time recurrent deterministic routing mechanism of RTRLNN. Simulations show that the RTRLNN-based model with coupled heuristic inputs (RTRLNN-CHI, average error percentage (AEP)/average forecast lead-time (AFLT): 6.3%/49 h) can achieve better prediction than the model with non-heuristic inputs (AEP of RTRLNN-NHI and ANFIS-NHI: 15.2%/31.8%) because of the full consideration of real-time hydrological initial/boundary conditions. Besides, the RTRLNN-CHI model can promote the forecasted lead-time above 49 h with less than 10% of AEP which can overcome the previous forecasted limits of 6-h AFLT with above 20%–40% of AEP.
Relation: 7(11)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40124
Appears in Collections:[海洋環境資訊系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML71View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback