English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2350291      Online Users : 35
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40012

Title: Sea surface temperature, productivity, and Terrestrial flux variations of the southeastern South China Sea over the past 800000 years (IMAGES MD972142)
Authors: Liang Jian Shiau;Pai Sen Yu;Kuo Yen Wei;Masanobu Yamamoto;Teh Quei Lee;Ein Fen Yu;Tien Hsi Fang;Min Te Chen
Contributors: 國立臺灣海洋大學:海洋環境資訊學系
Date: 2008-08
Issue Date: 2017-01-12T02:38:36Z
Publisher: Terrestrial Atmospheric and Oceanic Sciences
Abstract: Abstract: Variations in sea surface temperature (SST), productivity, and biogenic components such as total organic carbon (TOC), carbonate, and opal contents measured from IMAGES (International Marine Global Changes Study) core MD972142 provide information about long-term paleoceanographic changes during the past ~870000 years in the southeastern South China Sea (SCS). MD972142 U 37 k' -SSTs varied from 25 to 29°C, paralleling the glacial to interglacial changes. MD972142 biogenic components show relatively high carbonate and opal, and low TOC contents in interglacial stages, and low carbonate and opal and high TOC contents in glacial stages, and these variations appear to be sensitive to regional terrestrial sediment input and productivity. Our analysis indicates that the MD972142 carbonate record is primarily controlled by terrestrial sediment inputs that are associated with sea level fluctuations during past glacial-interglacial stages. The TOC record reflects past glacial-interglacial changes in both monsoon-induced productivity and terrestrial organic matter input in the SCS. The TOC record exhibits several short-term peaks that are associated with lower U 37 k' -SSTs (especially in MIS 2 -4, 10, 12), perhaps implying a much strengthened winter monsoon. The opal record shows relatively high content in most interglacial stages, which appears to be linked to increased summer monsoon upwelling or increased siliceous sediment input by more precipitation and river runoff during warm climate conditions. The TOC and opal contents both show long-term increasing trends since the mid-Brunhes, most noticeably from ~330 kya. The long-term trends observed in this study are most likely attributable to changes in SCS hydrography, productivity, and/or preservation in response to the increased strength of the East Asian monsoon system on possibly tectonic timescales.
Relation: 19(4)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/40012
Appears in Collections:[海洋環境資訊系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML57View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback