English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2349732      Online Users : 26
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/39363

Title: Assessment of the inhibition of Dengue virus infection by carrageenan via real-time monitoring of cellular oxygen consumption rates within a microfluidic device
Authors: Shih-Hao Huang;Yi-Syun Lin;Chih-Wei Wu;Chang-Jer Wu
Contributors: 國立臺灣海洋大學:食品科學系
Date: 2014-04
Issue Date: 2016-12-07T06:37:17Z
Publisher: Biomicrofluidics
Abstract: Abstract: A microfluidic device combined with a light modulation system was developed to assess the inhibitory effect of carrageenan on Dengue virus (DENV) infection via real-time monitoring of cellular oxygen consumption rates (OCRs). Measuring cellular OCRs, which can reflect cellular metabolic activity, enabled us to monitor the process of viral infection in real time and to rapidly determine the antiviral activity of potential drugs/chemical compounds. The time variation of the cellular OCR of single cells that were infected in situ by DENV at different multiplicity of infection (m.o.i.) values was first successfully measured within a microfluidic device. The influence of the timing of carrageenan treatment on DENV infection was then examined by real-time monitoring of cellular OCRs in three groups. Cells that were pre-treated with carrageenan and then infected with DENV served as a pre-treatment group, cells to which carrageenan was added simultaneously with DENV served as a virucide group, and cells that were pre-infected with DENV and then treated with carrageenan served as a post-treatment group. By monitoring cellular OCRs, we could rapidly evaluate the inhibitory effect of carrageenan on DENV infection, obtaining a result within 7 h and showing that carrageenan had strong and effective anti-DENV activity in the three groups. In particular, a strong inhibitory effect was observed in the virucide group. Moreover, once the virus enters host cells in the post-treatment group, the immediate treatment with carrageenan for the infected cells has higher efficiency of antiviral activity. Our proposed platform enables to perform time-course or dose-response measurements of changes in cellular metabolic activity caused by diseases, chemical compounds, and drugs via monitoring of the cellular OCR, with rapid and real-time detection. This approach provides the potential to study a wide range of biological applications in cell-based biosensing, toxicology, and drug discovery.
Relation: 8(2)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/39363
Appears in Collections:[食品科學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback