English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27221/39064
Visitors : 2404901      Online Users : 56
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/39251

Title: Cellular biocompatibility of cyanophycin substratum prepared with recombinant Escherichia coli
Authors: Wen-Chi Tseng
Tsuei-Yun Fang
Sheng-Yang Chen
Contributors: 國立臺灣海洋大學:食品科學系
Keywords: Macrophage activation
Tissue cell culture
Biomedical
Protein
Biomimetics
Date: 2016-01
Issue Date: 2016-11-30T07:16:18Z
Publisher: Biochemical Engineering Journal
Abstract: Abstract: Cyanophycin from recombinant Escherichia coli is composed of aspartic acid as a backbone with arginine and lysine as the side chains. Cyanophycin exists in insoluble and soluble forms based on its solubility in aqueous solution. This study aims to assess the physical properties and cellular biocompatibility of cyanophycin prepared with recombinant E. coli. The decomposition temperature of cyanophycin was around 230 °C for both forms of cyanophycin, as measured by thermogravimetric analysis. Soluble cyanophycin showed no toxicity to Chinese Hamster Ovary (CHO) cells at a concentration of 5 mg/mL as revealed by the thiazolyl blue tetrazolium bromide method. When the insoluble cyanophycin formed thin films, the films exhibited a structure of stacking lamellae. CHO cells grown on the films had a higher relative cell density, or 107–142% that of those grown on tissue culture polystyrene (TCPS), 48 h after seeding. After the removal of serum-containing medium, the CHO cells maintained cell morphology for up to 72 h in Dulbecco’s modified Eagle medium without serum, and the relative cell density was 150–170% that of the cells grown on TCPS 48 h after serum removal, indicating that the cyanophycin substratum could provide sustained cell growth. When RAW 246.7 cells were grown on the films of insoluble cyanophycin for 96 h, nitric oxide concentration released from the macrophages was below 2 mM/mg protein, suggesting that a minimal immune response was elicited. The results showed that cyanophycin might have the potential to serve as a biocompatible, degradable material in biomedical applications, such as tissue engineering and drug delivery.
Relation: 105(A)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/39251
Appears in Collections:[食品科學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML64View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback