National Taiwan Ocean University Institutional Repository:Item 987654321/38456
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40652
Visitors : 755746      Online Users : 51
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item:

Title: Characterization of Copper/Zinc-Superoxide Dismutase from Pagrus major cDNA and Enzyme Stability
Authors: Chuian-Fu Ken
De-Feng Weng
Kow-Jen Duan
Chi-Tsai Lin
Contributors: 國立臺灣海洋大學:生命科學暨生物科技學系
Keywords: Pagrus major
Escherichia coli
Date: 2002
Issue Date: 2016-09-06T07:13:26Z
Publisher: Journal of Agriculture and Food Chemistry
Abstract: Abstract: A full-length cDNA of 794 bp encoding a putative copper/zinc-superoxide dismutase (Cu/Zn-SOD) from Pagrus major was cloned by the PCR approach. Nucleotide sequence analysis of this cDNA clone revealed that it comprises a complete open reading frame coding for 154 amino acid residues. The deduced amino acid sequence showed high similarity (53−91%) with the sequences of Cu/Zn-SOD from other species. Computer analysis of the residues required for coordinating copper (His-47, 49, 64, and 121) and zinc (His-64, 72, 81, and Asp-84), as well as the two cysteines (58 and 147) that form a single disulfide bond, were well conserved among all reported Cu/Zn-SOD sequences. To further characterize the Pagrus major Cu/Zn-SOD, the coding region was subcloned into an expression vector, pET-20b(+), and transformed into Escherichia coli BL21(DE3). The expression of the Cu/Zn-SOD was confirmed by enzyme activity stained on a native-gel and purified by Ni2+-nitrilotriacetic acid Sepharose superflow. Dimer was the major form of the enzyme in equilibrium. The dimerization of the enzyme was inhibited under acidic pH (below 4.0 or higher than 10.0). The half-life was 8.6 min and the inactivation rate constant (kd) was 9.69 × 10-2 min-1 at 70 °C. The enzyme activity was not significantly affected under 4% SDS or 0.5 M imidazole. The enzyme was resistant to proteolysis by both trypsin and chymotrypsin.
Relation: 50(4)
Appears in Collections:[Department of Life Science] Periodical Articles

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback