English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27248/39091
Visitors : 2416618      Online Users : 55
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/38425

Title: Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats.
Authors: Jwo SC;Chiu CH;Tang SJ;Hsieh MF.
Contributors: 國立臺灣海洋大學:生命科學暨生物科技學系
Date: 2013
Issue Date: 2016-09-01T03:40:28Z
Publisher: Biomed Mater.
Abstract: Abstract: The proper regeneration of intestinal muscle for functional peristalsis is the most challenging aspect of current small intestine tissue engineering. This study aimed to fabricate a hydrogel scaffold for the proliferation of intestinal smooth muscle cells (ISMCs). Tubular porous scaffolds of 10-20 wt% gelatin and 0.05-0.1 wt% poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel were cross-linked by carbodiimide and succinimide in an annular space of a glass mold. The scaffolds with higher gelatin contents degraded slower in the phosphate buffer solution. In rheological measurements, the hydrated scaffolds were elastic (all tangent delta <0.45); they responded differentially to frequency, indicating a complete viscoelastic property that is beneficial for soft tissue regeneration. Isolated rat ISMCs, with the characteristic biomarkers α-SMA, calponin and myh11, were loaded into the scaffolds by using either static or centrifugal methods. The average cell density inside the scaffolds increased in a time-dependent manner in most scaffolds of both seeding groups, although at early time points (seven days) the centrifugal seeding method trapped cells more efficiently and yielded a higher cell density than the static seeding method. The static seeding method increased the cell density from 7.5-fold to 16.3-fold after 28 days, whereas the centrifugal procedure produced a maximum increase of only 2.4-fold in the same period. In vitro degradation data showed that 50-80% of the scaffold was degraded by the 14th day. However, the self-secreted extracellular matrix maintained the integrity of the scaffolds for cell proliferation and spreading for up to 28 days. Confocal microscopic images revealed cell-cell contacts with the formation of a 3D network, demonstrating that the fabricated scaffolds were highly biocompatible. Therefore, these polymeric biomaterials hold great promise for in vivo applications of intestinal tissue engineering.
Relation: 8(6)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/38425
Appears in Collections:[生命科學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback