English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28605/40643
Visitors : 4492584      Online Users : 108
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/37598

Title: A geometric approach to optimal state‐space solutions with minimal realization for standard discrete‐time H 2 control problem
Authors: Chee-Fai Yung
Po-Feng Wu
Pei-Ju Wang
Contributors: 國立臺灣海洋大學:電機工程學系
Keywords: minimal realization
H2 control
algebraic Riccati equations
geometric approach
Lyapunov equations
Date: 2010
Issue Date: 2016-03-28T07:20:31Z
Publisher: Journal of the Chinese Institute of Engineers
Abstract: Abstract:This paper shows that the controllable and unobservable subspaces of the discrete-time
H2 optimal controller can be characterized by the image and kernel spaces
of two matrices Z2 and W2, where Z2 and W2 are positive semi-definite solutions of
two pertinent Lyapunov equations whose coefficients involve the stabilizing solutions
of two celebrated discrete-time algebraic Riccati equations (DAREs) used in
solving the H2 optimal control problem. By suitably choosing the bases adapted to Z2
and W2, a minimal order state-space realization of an H2 optimal controller is then
given via an elegant geometric approach. In terms of geometric language, all the
results and proofs given are clear and simple.
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/37598
Appears in Collections:[電機工程學系] 期刊論文

Files in This Item:

File Description SizeFormat
A geometric approach to optimal state space solutions with minimal realization for standard discrete time H 2 control problem.pdf253KbAdobe PDF63View/Open

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback