English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26987/38787
Visitors : 2292572      Online Users : 46
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/37448

Title: Hydrogen permeation in a Submerged Arc Weldment of TMCP steel
Authors: S.H. Wang;W.C.Luu;K.F.Ho;J.K.Wu
Contributors: 國立臺灣海洋大學:機械與機電工程學系
Keywords: TMCP
Hydrogen permeation
Hydrogen microprint technique
Date: 2002-09
Issue Date: 2016-03-01T02:47:42Z
Publisher: Materials Chemistry and Physics
Abstract: The effects of the heterogeneous microstructure at the base metal, the heat affected zone (HAZ) and weld metal on hydrogen permeation in thermo-mechanical controlled rolling (TMCP) steel weldments have been investigated. The base metal with equiaxed refined ferrite and scattered fine grain pearlite has the highest permeation rate and effective diffusivity. The HAZ with bainite shows the lowest values of the permeation rate and effective diffusivity. Weld metal yields a higher permeation rate coupled with an intermediate diffusivity value. The hydrogen apparent solubility is low for the base metal, intermediate for the HAZ and high for the weld metal. The mechanisms of hydrogen diffusion path and hydrogen traps are discussed and experimentally confirmed using the hydrogen microprint technique. The high diffusivity paths and the hydrogen trapping site are the grain boundary and the ferrite/carbide interfaces for both the base metal with refined ferrite and the HAZ with bainitic microstructure. The spaces among the basket-weave acicular ferrite, where the martensite and the retained austenite (M/A) constituents present, are the main hydrogen trapping sites for the weld metal.
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/37448
Appears in Collections:[機械與機電工程學系] 博碩士論文

Files in This Item:

There are no files associated with this item.

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback