English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 618577      Online Users : 76
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/36963

Title: Microstructure Design of Surface Permanent Magnet and Tooth Surface Stator in Brushless DC Motor with Low Rare Earth Material
Authors: Hsing-Cheng Yu;Bo-Syun Yu
余興政
Contributors: NTOU:Department of Systems Engineering and Naval Architecture
國立臺灣海洋大學:系統工程暨造船學系
Keywords: Brushless Motor;Microstructure;Rare Earth Material;Surface Permanent Magnet;Tooth Surface Structure
Date: 2013-12
Issue Date: 2015-05-20T01:32:52Z
Publisher: Applied Mechanics and Materials
Abstract: Permanent magnet (PM) brushless DC motors (BLDCMs) are widely applied in industrial drives. However, the price rising of rare earth resource resulted in country policy restriction, so it is detrimental for mass production of PM-BLDCMs. As a result, the design and manufacture tendency of PM-BLDCMs are smaller and slighter in adopting rare earth materials of PMs. Additional, the magnetic flux density of PMs are difficult to improve in the near future. The effective method is to decrease stator reluctance and to adjust magnetic flux distribution of the air gap in stator design. Hence, the surface permanent magnets (SPMs) and tooth surface stators (TSSs) are designed to improve the motor performance, and are calculated by finite-element analysis (FEA) software in this study. Various hemicycle groove microstructures of SPMs and TSSs for designing, analyzing and optimizing are considered to observe the magnetic field strength distribution and to reduce the cogging torque in PM-BLDCMs, and the FEA result can be regarded as important references of motor structure design. The cogging torque can be reduced 80.9% in SPM3-model and can be decayed 89.2% in TSS2-model versus original model separately, and the cogging torque of the optimal combination of SPM-BLDCM can be abated 62.4%. Furthermore, the usage amount of rare earth material volume in designed SPM-BLDCMs can be reduced 5.3% in average. Finally, a prototype of the SPM- BLDCM has been constructed to prove the simulation design.
Relation: 479-480, pp.427-430
URI: http://ntour.ntou.edu.tw/handle/987654321/36963
Appears in Collections:[系統工程暨造船學系] 期刊論文

Files in This Item:

There are no files associated with this item.



All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback