National Taiwan Ocean University Institutional Repository:Item 987654321/36538
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40652
Visitors : 770204      Online Users : 48
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item:

Title: Seismic structure in the northeastern South China Sea: S-wave velocity and Vp/Vs ratio derived from three-component OBS data
Authors: Zhao;M. H.;X. Qiu;S. H. Xia;H. L. Xu;P. Wang;T. K Wang;C. S. Lee;K. Y. Xia
Contributors: NTOU:Institute of Applied Geosciences
Keywords: Converted S-wave;Crustal structure;Vp/Vs ratios;The northeastern South China Sea
Date: 2010
Issue Date: 2015-05-19T06:26:00Z
Publisher: Tectonophysics
Abstract: A nearly 500-km-long seismic profile with reflective and refractive wide-angle Ocean Bottom Seismometer (OBS) data and Multi-Channel Seismic (MCS) data was acquired across the northeastern continental margin of the South China Sea (SCS). The S-wave crustal structure and Vp/Vs ratios have been obtained based on a previously published P-wave model using the software RayInvr. Modeling of vertical- and horizontal-component OBS data yields information on the seismic crustal velocities, lithology, and geophysical properties along the OBS-2001 seismic profile. S-wave velocities in the model increase generally with depth but exhibit high spatial variability, particularly from the shelf to the upper slope of the northeastern SCS margin. Vp/Vs ratios also reveal significant lithological heterogeneity. Dongsha–Penghu Uplift (DPU) is a tectonic zone with a thicker crust than adjacent areas and a high magnetic anomaly. With a Vp/Vs of 1.74 and a P-wave velocity of 5.0–5.5 km/s, the DPU primarily consists of felsic volcanic rocks in the upper crust and is similar to the petrology of Zhejiang–Fujian volcanic provinces, which perhaps is associated with a Mesozoic volcanic arc. The ocean–continent transition (OCT) in the northeastern SCS is characterized by a thinning continental crust, volcanoes in the upper crust, and a high velocity layer (HVL) in the lower crust. The S-wave velocity and Vp/Vs ratio suggest that the HVL has a mafic composition that may originate from underplating of the igneous rocks beneath the passive rifted crust after the cessation of seafloor spreading.
Relation: 480(1-4), pp.183-197
Appears in Collections:[Institute of Applied Geosciences] Periodical Articles

Files in This Item:

There are no files associated with this item.

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback