English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26987/38787
Visitors : 2290252      Online Users : 32
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/36123

Title: 高靈敏度與低成本表面電漿共振生醫感測晶片製程開發與應用
Fabrication and Applications of Low-cost High-sensitive Plasmonic Biochips
Authors: Ruei-Hung Weng
翁瑞鴻
Contributors: NTOU:Department of Mechanical and Mechatronic Engineering
國立臺灣海洋大學:機械與機電工程學系
Keywords: 表面電漿子共振;奈米壓印微影技術;奈米金屬結構;光學感測器;菲諾共振
Surface plasmon resonance;nanoimprinting lithography;metallic nanostructures;optical sensors;Fano resonances
Date: 2013
Issue Date: 2013-10-07T03:03:17Z
Abstract: 奈米金屬結構型態的表面電漿子共振感測器能夠以高靈敏度且無須標定的方式進行生物感測。然而,高通量和低成本的製造技術是發展該技術的主要障礙。在本論文中,使用奈米壓印技術的方法製造和測試以晶片型態為基礎的奈米結構。大面積且均勻的雙層金屬奈米狹縫結構以週期500nm和不同的狹縫寬度,轉印在塑膠基板上。以TM wave入射於金屬奈米結構激發出尖銳和非對稱的Fano resonance光譜分佈,對於環境折射率變化非常敏感,與單層金屬奈米狹縫相比,本研究製作的晶片具有更高的強度靈敏度,最高為13167%/ RIU(refractive index unit)。雙層金屬奈米狹縫結構更高的強度靈敏度是由於上下層金屬薄膜間重疊,造成近場光學的光譜耦合後,形成了更易於感測的光譜表現,且利用本研究開發的製程,可達到同樣結構的批次量產並降低製作成本。此外,本研究同時進行了反射式量測晶片開發,得到半高寬約7 nm的光譜表現,可預期得到極高的靈敏度表現。未來可應用本研究開發的製程進行高通量、高靈敏度、低成本的生物感測晶片製作,進行穿透及反射的量測,用以建立大量反應資料庫,並提升其檢測方式普及化甚至商業化的可能性。
Nanostructure-based sensors are capable of sensitive and label-free detection for biomedical applications. However, high-throughput and low-cost fabrication is one of the main issues which should be addressed. In this study, chip-based nanostructures for intensity-sensitive detection were fabricated and tested using a nanoimprinting technology. Large-area uniform double-layered metallic nanoslits with 500 nm period and various slit widths were made on polymer films. Transverse-magnetic polarized wave in these gold nanostructures generated sharp and asymmetric Fano resonances in transmission spectra, which were sensitive to the refractive index change of the environment. Compared to nanoslit arrays, the fabricated chip has a higher intensity sensitivity up to 13167 %/RIU (refractive index unit). The higher intensity sensitivity for the double-layered metallic nanoslits is attributed to a better confinement of surface plasmon wave on the metal/medium interface and in the grooves which result in a narrow surface plasmon resonance and cavity resonance, respectively. The interaction between narrower cavity resonances and Bloch wave surface plasmon polaritons results in a shaper Fano resonance. We also conducted an antigen-antibody interaction experiment in aqueous environment to verify the detection sensitivity in surface binding event. In addition, reflection-mode plasmonic biochips were fabricated and tested. The narrowest bandwidth was down to 7 nm, which was expected to have a higher sensing capability. Currently, the trend in the global biochips market is towards the fields of medical diagnostics and pharmaceutical research. The low-cost high-sensitive biochips can be applied to high-throughput label-free detection in transmission or reflection mode and fulfill the requirements of these fields.
URI: http://ethesys.lib.ntou.edu.tw/cdrfb3/record/#G0010072035
http://ntour.ntou.edu.tw/handle/987654321/36123
Appears in Collections:[機械與機電工程學系] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML132View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback