English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26987/38787
Visitors : 2283079      Online Users : 31
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/36020

Title: 32X32微橋結構陣列式紅外線感測元件應用於熱影像之研究
The study of suspended bridge 32X32 infrared detector array application to thermal image
Authors: 潘宇恆
Contributors: NTOU:Department of Electrical Engineering
國立臺灣海洋大學:電機工程學系
Keywords: 紅外線影像感測元件;微橋結構;TCR;支撐層
IR sensor;Microbridge structure;TCR;Support layer
Date: 2013
Issue Date: 2013-10-07T03:01:50Z
Abstract: 本論文利用半導體製程技術搭配MEMS技術製作陣列式紅外線影像感測元件,利用RuOx-AlxOx具有高TCR的特性,運用於元件感測層。由於矽基板熱傳導非常快,為了降低熱傳我們採用微橋結構搭配光學諧振腔結構,提升特定波長的吸收,並建構吸收層及反射層於結構中,以增加紅外線吸收率,並在最後掏空釋放製成後使元件只靠兩支支撐腳於基板上,使元件熱傳導大幅降低,提升元件訊號,並運用於熱影像。   在感測層方面,我們利用不同比例的RuOx-AlxOx混合物製作靶材,考慮TCR值越大越好,我們選用42%RuOx與58%AlxOx做混合,並使用射頻濺鍍機沉積薄膜。薄膜成長時我們利用不同壓力與不同溫度做為參數調整,最後以120 ℃、壓力16 mtorr條件下可得到最佳TCR值,在300k其值為-1.9(%K-1)。   在元件特性方面,為了使元件熱容減少,降低支撐層厚度,我們利用不同機台沉積Si3N4支撐層,在Sputter以200℃下沉積Si3N4 500 nm以及PECVD在300℃沉積 Si3N4 200 nm都成功做為微橋結構之支撐層。   在熱影像量測方面,我們將元件Bonding在PCB板上,並放入真空腔體內,再以黑體爐以50℃~150℃照射,於黑體爐出口前方處放不同形狀之遮罩體進行影像測試,並搭配中研院物理所朱明禮博士設計的讀取電路將照光前後訊號變化量轉換成電阻變化量,並透過程式顯示在電腦上,完成熱影像之量測。
This thesis was using semiconductor process technology with MEMS technology to produce an array infrared image sensor. The sensor layer material was RuOx-AlxOx with its high TCR characteristics. To enhance the absorption of a specific wavelength, the absorption layer and the reflective layer are constructed in the structure and increase the absorption rate of infrared. Thermal conductance is very large on silicon substrate. In order to reduce thermal conductance with micro-bridge structure optical resonator structure, it was fabricate by the release that device would be alone two legs on the substrate. By this two methods, we could enhance device signals and substantially reduce thermal conductance of device, respectively, and could be applied to thermal imaging. In the sensor layer, we use different mixture ratio of RuOx-AlxOx target. The larger absolute value of TCR could enhance the device quality, we mix 42% RuOx and 58% AlxOx together and deposited by RF sputtering film. The thin films growth parameters were different pressures and temperatures. Finally, the best parameters of high TCR was that sensor layer is deposited under 16 mtorr and 120 ℃,the value -1.9 (% K-1) at 300K. In order to reduce heat capacity of the device, the thickness of the support layer was reduced. The Si3N4 support layer was deposited by different machine. It was deposited Si3N4 500 nm at 200 ℃ and in Si3N4 200 nm at 300 ℃ by sputter and PECVD, respectively. It was successfully used as micro-bridge structure support layer. We bonded the gold wire on PCB, and placed into a vacuum chamber before the thermal imaging measurement. The blackbody radiation we setup was from 50 ℃~150 ℃. Different shapes mask was placed in front of the blackbody. The signal would convert to the resistance variation with Dr. Zhu designed read circuit, and was exhibited in display with computer program. Finally, we could saw an complete thermal image.
URI: http://ethesys.lib.ntou.edu.tw/cdrfb3/record/#G0010053010
http://ntour.ntou.edu.tw/handle/987654321/36020
Appears in Collections:[電機工程學系] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML352View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback