English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28603/40634
Visitors : 4213709      Online Users : 51
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/35722

Title: 應用FPGA及結合基因演算法與模糊補償之PID控制於雙旋翼多輸入多輸出系統
Application of FPGA with GA-PID and FC-PID Control for TRMS
Authors: Chi-Ming Chang
張起銘
Contributors: NTOU:Department of Communications Navigation and Control Engineering
國立臺灣海洋大學:通訊與導航工程學系
Keywords: 多輸入多輸出系統;FPGA;SOPC;基因演算法;模糊控制器;PID控制器
Multi-input multi-output system;FPGA;SOPC;genetic algorithms;fuzzy controller;PID controller
Date: 2013
Issue Date: 2013-10-07T02:58:15Z
Abstract: 本研究是使用Altera FPGA Cyclone II研發電路板作為控制晶片,對雙旋轉翼多輸入多輸出非線性系統(TRMS)來進行實驗。TRMS訊號產生的方式,是透過內部編碼器對兩翼上的位置進行編碼,再透過內部解碼IC-HCTL-2016解碼,將位置訊號解碼至FPGA上進行控制。HCTL-2016的操作頻率為14MHz,但是控制晶片為50MHz,雖然透過除頻可以進行控制,但是不匹配的情況常常發生。因此我們將解碼IC-HTCL-2016進行分析,利用FPGA 撰寫VERILOG HDL,將其功能於FPGA上實現,解決頻率不匹配的問題。整體操作流程是由TRMS內HEDS-9100光學增量編碼器產生訊號,透過FPGA解碼,並結合 SOPC Builder整合外部硬體電路。將控制訊號藉由SOPC Builder傳送給Nios II控制器做處理,處理完的訊號經由D/A轉換電路,轉換成電壓傳回TRMS以控制其運動狀態。控制器的設計是使用PID控制。基因演算法用於收尋最佳的PID參數,模糊控制器作為補償器來改善輸出性能,對TRMS做定位和追跡控制。基因演算法是根據控制性能要求來考慮有效參數範圍,以降低PID參數搜尋時間,再經由基因演算法則有效的求出PID參數。模糊補償器是利用期望輸出與實際輸出之間的誤差與誤差變化量作為輸入,經由模糊化、模糊規則庫、模糊推論引擎與解模糊後求得輸出補償,使得補償後能改善輸出性能與降低總誤差量。本論文所提出的控制系統可成功的應用於TRMS的定位控制及追跡控制。
Abstract This study uses the Altera FPGA Cyclone II research and development circuit board as a control chip for the TRMS. The TRMS is encoded on the horizontal and vertical positions through an internal encoder, then decoded through internal IC-HCTL-2016. The position signal is decoded and is used to control the TRMS. The operating frequency of the HCTL-2016 is 14MHz but the frequency of the control chip is 50MHz. Although the frequency can be matched by division process but unmatched cases happened frequently. Therefore, we analyze the decoder IC-HCTL-2016 and use VERILOG HDL to implement controller on the FPGA and solve the unmatched frequency problem. The processes are generated by TRMS HEDS-9100 optical incremental encoder signals and through the decoding of the FPGA combined with SOPC Builder integration of external hardware circuit. The control signal is sent to the Nios II controller processing by SOPC, the processed signal via the D / A conversion circuit is then converted into a voltage and return to TRMS to control the moving status. PID control is used in controller design. Genetic algorithms (GA) are utilized to search optimal PID parameters for positioning and tracking control of the TRMS. This method can determine a valid parameter range that can reduce the PID parameter search time, and then the PID parameters can be obtained via genetic algorithms. Fuzzy controller is used as compensator to improve output performance. Fuzzy compensator uses the error and change in error of desired output and actual output as input, through fuzzification, fuzzy rule base, inference engine, and defuzzification, to calculate the compensation value. The fuzzy compensator can improve the output performance and reduce the total error. With this proposed control scheme, setpoint control and trajectory tracking control of the TRMS can be performed successfully.
URI: http://ethesys.lib.ntou.edu.tw/cdrfb3/record/#G0019967003
http://ntour.ntou.edu.tw/handle/987654321/35722
Appears in Collections:[通訊與導航工程學系] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML152View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback